
 

 

 

         Volume 12, Issue 4, April 2024 

Impact Factor: 8.379 



International Journal of Innovative Research in Computer and Communication Engineering 

                                              | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | Monthly Peer Reviewed & Referred Journal | 

|| Volume 12, Issue 4, April 2024 || 

| DOI: 10.15680/IJIRCCE.2024.1204158 |  

IJIRCCE©2024                                                         |     An ISO 9001:2008 Certified Journal   |                                                    2758 

 

 

A Lightweight and Multi-Stage Approach for 

Android Malware Detection Using Non-Invasive 

Machine Learning Techniques 

R.VIJAY, MATHAN KUMAR J, ARAVINTHAN S, KAVIN SHANKAR S 

Assistant Professor, Department of CSE, Muthayammal Engineering College (Autonomous), Rasipuram, Tamil Nadu, India 

Department of CSE, Muthayammal Engineering College (Autonomous), Rasipuram, Tamil Nadu, India 

Department of CSE, Muthayammal Engineering College (Autonomous), Rasipuram, Tamil Nadu, India 

Department of CSE, Muthayammal Engineering College (Autonomous), Rasipuram, Tamil Nadu, India 

Department of CSE, Muthayammal Engineering College (Autonomous), Rasipuram, Tamil Nadu, India 

 

ABSTRACT: Malware has long been employed in cyberattacks. Due to their widespread usage, malicious software 

developers target Android smartphones, which may store a lot of sensitive data. As the main mobile OS, Android 

has always attracted malware developers. Thus, several Android malware species target susceptible people 

everyday, making manual malware analysis unfeasible. ML and DL methods for malware identification and 

categorization might help cyber forensic investigators curb the spread of malicious software. Applying DL methods 

helps safeguard applications. Cybersecurity issues including intrusion detection, malware classification and 

identification, phishing and spam detection, and spam recognition have been addressed using DL approaches. 

ECNN uses the BP (Back Propagation) model for every layer between several intermediate layers, making it faster 

and more accurate than other methods. SVM Learning with Weighted Features and CNN with SGD optimization 

for static analysis of mobile apps are presented in this research. The ECNN model has the highest accuracy of 

96.92, 96.14, and 95.8 for Android Malware Dataset-1, 2, and 3. On the three datasets, the ECNN model has 96%, 

94%, and 94% precision. Smartphone malware analysis is faster and more accurate using this method.  
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I.INTRODUCTION 

 
Smartphones, in reality, are the personal desktop computers of today’s world. With smartphones, we can do almost 

anything we intend to do with personal desktop computers. Smartphones have become integral to modern society, 

impacting various aspects of our lives. Their versatility and functionality have revolutionized how we communicate, 

work, entertain ourselves, and access information. In addition to being a communication device to place calls and send 

SMSs, smartphones are used for internet browsing, social media, emails, photography and videography, navigation, 

online shopping, banking, health and fitness, education and learning, personal organization, and intelligent home control. 

The current mobile market share is 20% higher than desktops, meaning smartphones are leading the way ahead of 

desktops in terms of usage [1]. 

 

Among all the types of smartphones available in the market, smartphones with the Android operating system are 

the most popular. The reason for the popularity is that Android is an open-source platform many manufacturers adopt. As 

per the report of Statcounter [2], the global market share of mobile operating systems is entirely dominated by the 

Android operating system with a 70% share. The high market share of the Android operating system is one of the 

primary reasons for many malware attacks on the Android platform over the past few years. As per the report [3], several 

mobile trojan subscribers were found on Google’s official app marketplace in 2022. As per the blog post by renowned 

antivirus firm McAfee [4], 60 Android apps with 100 million downloads were found to be spreading a new malware 

strain to unsuspecting users. According to the news article on TechRadar [5], a new ransomware, “Daam”, capable of 

hiding from antivirus software, was detected. The report on the development of new Android malware shared by 
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Statistica [6] shows that 5.6 million Android malware samples were seen in 2020. Moreover, millions of Android 

malware have been detected yearly from 2016 to 2020. Hence, there is a dire need to develop Android malware detection 

mechanisms to see malicious applications. 

 

 
 

Fig 1: DeepCatra: Learning Flow 

 

Malware analysis is a technique by which we can analyze the functionality and source of malware. Malware 

analysis can be broadly classified into three types [7]: static analysis, dynamic analysis, and hybrid analysis. These 

different analysis techniques can form a detection model to classify an Android application as malicious or benign. Three 

types of detection models could be possible: static, dynamic, and hybrid. In static detection, features are extracted using 

static analysis, which is the art of malware analysis that extracts features from the application without installing or 

executing the application. In dynamic detection, features are extracted using dynamic analysis, performed by executing or 

running the application and capturing the features at run time. The hybrid detection model is based upon hybrid analysis, 

which extracts both static and dynamic features from the application. 

 

In static detection methods, the standard static techniques employed for extracting static features are manifest file-

based detection, API calls-based detection, and Java code-based detection methods. In the manifest file-based detection 

technique, features are extracted from the manifest file of the Android application. Li et al. [8] used permissions from the 

manifest file and achieved an accuracy of 90%. Arora et al. [9] used permissions pairs from the manifest file and 

achieved an overall accuracy of 95.44%. IPDroid [10] used both permissions and intents from the manifest file and 

achieved an accuracy of 94.73% with a Random Forest classifier. 

 

API calls-based feature detection is based on extracting APIs to be called by Android applications. Droidmat [11] 

used API calls along with manifest file components to detect malicious applications with an accuracy of 97.87%. Elish et 

al. [12] extracted sensitive API calls invocation by the user to build a detection model. Zhang et al. [13] created 

association rules between API calls and achieved an accuracy of 96%. 

 

 

 

 

 

http://www.ijircce.com/
https://www.mdpi.com/2079-9292/13/3/482#B6-electronics-13-00482
https://www.mdpi.com/2079-9292/13/3/482#B7-electronics-13-00482
https://www.mdpi.com/2079-9292/13/3/482#B8-electronics-13-00482
https://www.mdpi.com/2079-9292/13/3/482#B9-electronics-13-00482
https://www.mdpi.com/2079-9292/13/3/482#B10-electronics-13-00482
https://www.mdpi.com/2079-9292/13/3/482#B11-electronics-13-00482
https://www.mdpi.com/2079-9292/13/3/482#B12-electronics-13-00482
https://www.mdpi.com/2079-9292/13/3/482#B13-electronics-13-00482


International Journal of Innovative Research in Computer and Communication Engineering 

                                              | e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 | Monthly Peer Reviewed & Referred Journal | 

|| Volume 12, Issue 4, April 2024 || 

| DOI: 10.15680/IJIRCCE.2024.1204158 |  

IJIRCCE©2024                                                         |     An ISO 9001:2008 Certified Journal   |                                                    2760 

 

 

II.RELATED WORK 
 

This section describes the work on static malware detection methods based on manifest file-based detection, API 

calls-based detection, and Java code-based detection. Therefore, this section is divided into three subsections: manifest 

file-based detection, API calls-based detection, and Java code-based detection. 

 

In this sub-section, we review the works that have analyzed features from manifest files for Android malware 

detection. Grace et al. [17] established the relationship between embedded ad libraries and host apps as a significant risk 

factor for Android-based smart devices. Enck et al. [18] developed a lightweight certification model based on security 

configuration within an application to identify risky applications. A malware detection system, SIGPID, was proposed by 

Li et al. [8], in which three-level pruning is applied to filter out a minimal permission set that can be used for malicious 

app identification. Talha et al. [19] developed a client–server-based tool known as APK-auditor to detect malicious 

applications that maintain the Android profile database based on permission analysis. 

 

The authors in [20] developed context category ontology based on permissions to detect the potential risk of 

information leakage with the help of a malicious activity. A prototype ASE was developed by Song et al. [21], which 

applied four levels of filtering based on static analysis to detect an application as benign or malicious. DroidChain [22] is 

another malware detection approach that applies static analysis and a behavior chain model to detect four types of 

malicious behaviors, i.e., privacy leakage, SMS financial charges, malware installation, and privilege escalation. 

ProDroid [23] is another behavior-based malware detection model that uses the biological sequence technique and 

Markov chain model to match the classes and API of decompiled applications to the stored malicious behavior models. 

Moonsamy et al. [24] used both requested and used permissions to mine contrasting permission sets, which were further 

used to detect an application as benign or malware. 

used intent filters and permissions to identify an application as benign and malicious. work is based on rankings of 

requested permissions based on risk, and the selection of risky permission subset is made to train machine learning 

models. DroidRanger was developed by the authors in as a malicious application detection tool using permission 

behavior and heuristic filtering, which also successfully discovered zero-day malware did a unique work of annotating 

the capabilities of detected malware regarding security and privacy concerns. APIs, intents, and permissions were used in 

to perform similarity associations with malware samples and detect malicious applications using hamming distance. 

 tried to develop a fast malware detection model using multiple features such as permissions and opcode sequences. 

is a lightweight malware detection technique that can be deployed on the smartphone. The developed method can detect 

malicious applications on the smartphone within ten seconds of download. work is based on selecting prominent features 

from various sets of static features. sed ten different feature selection techniques to find the best possible combination of 

features to detect malicious applications effectively. is a genetic search-based technique, in which a genetic algorithm 

minimizes the number of features. 

 

III.METHODS 
 
First, each of the features mentioned above are considered individually to be pre-processed. The feature correlation 

score is calculated for each of the separate features, i.e., permissions, API calls, system commands, and opcodes. This 

feature correlation score is the basis for eliminating such features that are highly correlated with the existing features. The 

elimination of closely interconnected attributes occurs due to their strong correlation, resulting in a high degree of linear 

dependence. As a result, they exert nearly identical influences on the dependent variable. Thus, in cases where two 

attributes exhibit significant correlation, it is feasible to omit one of them. A correlation score of 90 per cent or more is 

used to select one feature out of two and eliminate the other. After this round, we received 4428 permissions out of 5501 

permissions, 1589 API calls out of 2128 API calls, 93 System commands out of 103 System calls, and 159 Opcodes out 

of 224 Opcodes. 

 

The formula for the Chi-square test involves several key terms and calculations, as shown in Equation is the 

expected frequency of category i under the null hypothesis. The sum is taken over all categories in the contingency 

table.Initially, the null hypothesis assumes that the two variables, i.e., the feature variable and the class variable, do not 

have any association. Then, the Chi-square test is applied to those variables using Equation (1) to calculate the Chi-

square test statistic value. The Chi-square distribution table maps the estimated chi-square test statistic value to the 

corresponding p-value. The p-value less than 0.05 means that the null hypothesis assumed is false, and the alternate 

hypothesis that the class variable and the feature variable are associated with each other is true. All those features in each 

feature set that fall in the rejection region whose p-value is less than 0.05 are selected as a new feature subset for each 
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feature set. Choosing a p-value of less than 0.05 means the features falling in this rejection region have 95% confidence 

of dependency on the class variable. Hence, in the end, we got a subset of each feature space with the minimized feature 

set from each feature space, i.e., permissions, API calls, system commands, and opcodes’ feature space. 

 

 
 

Fig 2: Convolution Neural Network 

 

Fourthly, we can combine two types of feature sets out of permissions, opcodes, API calls, and system commands 

in six ways. We experimented on all these six combinations and observed that opcodes and API calls combinations give 

the highest accuracy among all the six types of combinations. The reason seems to be obvious from the fact that opcodes 

constitute low-level instructions executed by a processor. In the realm of Android malware detection, scrutinizing the 

sequence of opcodes within an app’s code can unveil discernible patterns suggestive of malicious behavior. 

Simultaneously, examining the app’s API calls offers insights into its conduct. Specific API calls may serve as markers 

for malicious activities, and analyzing their patterns can assist in identifying malware. Consequently, the amalgamation 

of opcodes and API examines a more detailed perspective on an app’s behavior at the code level. This approach proves 

advantageous for pinpointing nuanced and sophisticated malware that may employ obfuscation techniques. In contrast, 

permissions offer a higher-level overview based on declared capabilities, potentially offering less specificity. 

 

Similarly, we combined all these four features in the group of three. The total number of combinations possible are 

four. Experimenting with all these four combination establishes that combining permissions, opcodes, and API calls is 

best among them. The reason seem to be that permissions offer insights into an app’s officially declared capabilities. 

Integrating permissions with opcodes and API calls enhances our comprehension of an app’s intended functionality and 

the possibility of misuse. Specific combinations of permissions can act as early indicators of potential issues, even before 

delving into the details of code execution. While opcodes and API calls provide a granular view of an app’s behavior at 
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the code level, incorporating permissions into the analysis contributes to a broader context, fostering a more 

comprehensive understanding of an app’s intentions and the associated risks. 

 

III.RESULT ANALYSIS 
 

the results of four sets of permissions, i.e., all permissions in the data set, reduced permissions obtained after 

applying correlation feature elimination as permission correlation, permission chi as a set of permissions obtained after 

applying chi-square test on permission correlation, and finally permission reduct as the reduced permission feature set 

obtained after applying rough set reduct on permission chi. All four permission sets are used to train all six classifiers, 

i.e., Support Vector Machines (SVM), K-nearest neighbours, Random Forest, Logistic regression, ANN, and CNN. The 

results indicate that, for each type of classifier, as the feature set is changed from all permissions to permission 

correlation then to permission chi and finally to permission reduct, the accuracy increases. This means that reduct feature 

sets are the best for building malware detection systems. 

 

In this subsection, we summarize the reasoning behind the detection results achieved from the proposed model. The 

proposed model gives us the highest accuracy of 97% with all four features. We observe that the detection accuracy 

significantly improves when we combine all four types of features for detection. The reason behind this observation is 

that different categories of features capture different behavioral aspect of malicious application. Hence, combining 

different types of features gives us wholesome characteristics of a malicious application under consideration. Therefore, 

increasing the number of features in combinations helps to improve the overall accuracy. 

Secondly, we observed that API calls give us better results as compared to other features individually. Malicious 

software developers might try to avoid being detected by obscuring their code. Nevertheless, concealing the need for 

specific API calls is challenging. Identifying these calls can aid in the identification of malware that is intentionally 

concealed. Hence, results with API calls are better when compared to other features. 

Thirdly, Random Forest gives us the better results when compared to other classifiers. The reason lies in the fact 

that Random Forest is a technique that employs a collection of decision trees to formulate predictions. This method of 

ensembling is beneficial for mitigating the variance and overfitting risks inherent in individual decision trees. Through 

the consolidation of predictions from numerous trees, there is a consistent enhancement in overall performance. 

 

IV.CONCLUSIONS 
 
In this work, we have proposed a novel Android malware detection model based on rough set theory. We have 

considered the combination of four static features, namely, permissions, opcodes, API calls, and system commands. 

Initially, a data pre-processing stage was executed, during which correlated features, as well as features that exhibited no 

dependence on the class variable, were eliminated. A ranking score was computed to establish the significance of each 

feature by employing the concept of Discernibility Matrices from rough set theory. Subsequently, an algorithm for 

computing rough set reducts was employed to reduce the number of features within each category based on the ranking 

score and the Discernibility Matrix concept of rough set theory. Following this reduction step, machine learning 

algorithms were applied to assess the detection accuracy using the calculated reducts. To gauge the effectiveness of the 

proposed model, a comparison was drawn against other advanced detection techniques. The results of this comparison 

underscored the superior performance of the proposed model over other state-of-the-art models in the field. 

In our future work, we will try to work on the limitations of static analysis, i.e, we will be using dynamic analysis 

techniques along with static analysis techniques to build hybrid malware detection methods. Currently, the proposed 

model is an off-device model, and hence it can not be installed on smartphones for real-time detection. In future, we will 

propose a client–server-based model to integrate in smartphones. 
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