

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0309060 8582

Improved Architecture for Floating Point

Addition
Meera K A

M. Tech Scholar, Dept. of Electronics, IIET, M G University, Kerala, India

ABSTRACT: This paper presents improved architectures for floating point addition. The improved architecture

performs two additions in a single unit to achieve better performance and better accuracy. To improve the performance

of the three term adder, several optimization techniques are applied. Including exponent compare and significand

alignment, dual-reduction, early normalization, three input leading zero anticipation, compound addition and rounding.

The proposed system reduce the area, delay and power consumption. In addition, the improved floating point three term

adder rounding only once, which improves the accuracy.

KEYWORDS: Floating point arithmetic; optimization techniques for addition; three term addition; performance

improvement

I. INTRODUCTION

Most of the general purpose and application specific processors using floating point addition. Floating point

arithmetic differentiated from fixed point arithmetic by its constant relative precision over a wide dynamic range.

Floating point operations require complex processes, including alignment, normalization and rounding, which increases

the area, power consumption and latency. To reduce the overhead, improved floating point units have been proposed,

which execute several operations in a single unit to reduce the area, power consumption and latency.

Traditional floating point two term adders are discussed in the previous work [1-3]. A network of the two term

adders loses accuracy due to the multiple rounding one after each addition. Several issues for the design of the floating

point three term adder are discussed in the previous work [4], [5]. They are 1) Complex exponent processing and

significand alignment, 2) Complementation after the significand addition, 3) Large precision significand addition, 4)

Massive cancellation management, and 5) Complex round processing. Improved architecture, those issues are reduced

by using several optimization techniques.

Optimization techniques are applied not only to resolve the design issues but also to improve the performance: A

new exponent compare and significand alignment scheme is proposed. The three exponent differences are computed in

parallel and the significand alignment can be done using them. Simultaneous operations reduce the latency. Dual

reduction used to generate positive and negative significand pairs. This will avoid the complementation after the

significand addition and also reduce the latency.

Significand addition size can be minimized using early normalization.It can possible to reduce the size of adder by

half. By the use of Leading Zero Anticipation (LZA) hides the delay of 3:2 reduction trees. Compound addition used

for fast rounding, with the help of round logic so that the delay is hidden.

II. RELATED WORK

 A traditional fused floating point three term adder [4], [5]. The traditional floating point three term adder performs

the two additions at once. The procedure of the traditional fused floating point tree term adder is:

1. The exponent compare logic determines the largest exponent from three operands. Computes the differences

between the largest exponent and each exponent. The significands are shifted by the amount of the

corresponding exponent differences.

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0309060 8583

2. The aligned significands are inverted if the corresponding operations are subtraction. Then, the significands

are passed to the 3:2 Carry Save Adders (CSA) are used to perform the reduction, which reduces the three

significands to two.

3. The significand addition is performed and the sum is complemented if it is negative. The LZA is performed in

parallel with the significand addition and the significand sum is shifted by the amount of the LZA result. The

carry out of the significand addition is passed to the sign logic and the exponent adjustment logic.

4. Sign logic determines the sign bit of the sum. The sign bit is passed to the round logic. The normalized

significand is rounded and post normalized. The carry out of the significand addition and the shift amount

from the LZA are used for exponent adjustment.

III. PROPOSED SYSTEM

Proposed system introducing optimizations techniques that can be applied to improve the performance of floating

point addition. The modified design for an improved fused floating point three term adder shown in fig.1 . In this

section, five optimizations for the improved fused floating point three term adder are described: 1) A new exponent

compare and significand alignment scheme, 2) Dual reduction to avoid the need for complementation after the

significand addition, 3) Early normalization, 4) Three input LZA, and 5) Compound addition and rounding.

Fig. 1.Improved Architecture for Floating Point Addition

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0309060 8584

A. Exponent Compare and Significand Alignment:

 In order to reduce the latency, a new exponent compare and significand alignment logic is proposed as shown in

Fig.2 . Exponent differences are computed using six subtraction expa-expb , expb-expa , expb-expc , expc-expb , expc-expa

, expa-expc .

 Positive differences are selected from exponent differences pair, that skipping the complementation after subtraction.

Exponent difference used for significand shifter so that the exponent compare and significand alignment are

overlapped. By this method delay can reduced.

Fig. 2.Exponent Compare and Significand Alignment

 The sticky logic is performed during the alignment to determine the guard, round and sticky bits. First and second

bits under the LSBs are guard and round bits. Sticky bit can calculated by using OR tree. The largest exponent and

aligned significands are determined by control logic shown result in Table 1. The aligned significands become 2f+ 6

bits wide including two overflow bits, and guard, round and sticky bits, where f is the number of the significand. The

exponent compare and significand alignment logic reduce the latency due to both operations done simultaneously.

Table.1 .Exponent Compare Control Logic

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0309060 8585

B. Invert & Dual-Reduction:

 Sign logic determines the effective sign bit using three sign bits and two opcodes. Opcodes are the first and second

sign bits respectively.

 Sign_eff_a=sign_a

 Sign_eff_b=sign_a ⊕ (sign_b ⊕ op1)

 Sign_eff_c=sign_a ⊕ (sign_c ⊕ op2)

 To avoid the increments after the inverters, 2 bits are extended to the LSB of the significands that are propagated to

the significand addition to handle the cases that one or two significands are inverted by effectively adding 1 or 2,

respectively. Table 2 shows the 2 bit extended LSBs based on the effective sign bits.

Table.2 . Two Bit Extended LSBs for Complementation

 Dual reduction avoids the complementation after significant addition. The two 3:2 CSAs produce the two reduced

significand pairs. Between the two significand pairs, the positive pair is selected based on the sign of the significand

sum. The part of addition in dual reduction carried out by the Ladner Ficher adder and which performs

 pi=ai⊕bi

 gi=aibi

 Pi
j
=pipi-1 …………..pi+(2

j
-1)

 Gi
j
 =gi+gi-1pi+………+gi-(2

j
 -1)pipi-1……..pi-(2

j
-2)

 ai and bi are the i th bits of significands

C. Early Normalization:

 Large significands require a large significand addition and normalization, which is the biggest bottleneck of the

floating point three term adder. Early normalization is applied to reduce this problem. The normalization is performed

prior to the significand addition so that the significand adder size is reduced to f+1. The rest of lower bits f+7 are

passed to rounding. By normalizing the significand pair prior to the significand addition, the round position is fixed so

that the significand addition and rounding can be performed in parallel, which significantly reduces the latency of the

critical path.

D. Three Input LZA and Significand Comparison

 The three-input LZA encodes the three inputs at once to skip the delay of the 3:2 CSA. The three-input LZA can be

implemented by extending the two input LZA [6]. The three input LZA consists of two parts: 1) Pre encoding indicator

vectors and 2) Leading Zero Detection (LZD) logic for generating the leading zero count.

The pre encoder generate the W vector as

W=A+B+C

 Wi=ai+bi+ci

 Wi E {0,1,2,3}

ai, bi, ci are i th bit of significands

The W vector can be represented by four elements

 Pi
0
=1 if wi=0

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0309060 8586

 Pi
1
=1 if wi=1

 Pi
2
=1 if wi=2

 Pi
3
=1 if wi=3

The W Vector Is Pre-encoded Into Three Symbols

 zi=pi
0
(p

0
i-1+p

1
i-1)+p

3
i(p

2
i-1+p

3
i-1)

 ti=(pi
0
+pi

2
)(pi-1

2
+pi-1

3
)+pi

1
+pi

3
)(pi-1

0
+pi-1)

 gi=pi
1
(pi-1

2
+pi-1

3
)+pi

2
(pi-1

0
+pi-1

1
)

F factor computation

 fi=ti+1(gizi-1+zigi-1)+ti+1(zizi-1+gigi-1)

 The F vector is passed to the LZD logic. The LZD produces the leading zero count which becomes the shift amount

of the normalization. LZD logic producing the MSBs of the shift amount first is selected so that the LZD logic and the

normalization shifter are overlapped [4]. Fig. 3 shows the 64 bit LZD tree, which used for the single precision. Lower

levels of LZD logic overlap the delay for higher bits.

Fig. 3.64 Bit LZD Tree

 To find out the sign of significand sum significand comparison is used. In order to reduce the overhead,

LZA pre-encoded bits can be used for the comparison tree[7].

signif_comp = zn+tnzn-1+tntn-1zn-2......+ tntn-1tn2……t1z0+tntn-1tn-2.....t0

 n is the MSB position of significands.

 Significand comparison used for sign decision.

 sign=sign_a⊕signif_comp

E. Compound Addition and Rounding

 The three term adder have two aligned significands, which causes carry propagation from the lower part. Then

overflow can occur up to 2 bits. The significand addition result needs to be right shifted ,which changes the rounding

position. Fig. 4 shows the overflows of the significand addition depends on the significand result selection and the

rounding position.

 Compound addition and rounding depends on [8] and compound addition determines the upper f bits including

possible two overflow bits, and the rounding determines the rest of three LSBs and the round decision. The round logic

requires computing the LSB, carry, guard, round and sticky bits (L, C, G, R and S) to determine if the significand sum

is rounded up or not.In Fig.4 shows the rounding position depends on overflow bits.

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0309060 8587

Fig. 4.Significand Selection and Rounding

 Compound addition and rounding shown in Fig.5. determines the upper f bits including possible two overflow bits,

and the rounding determines the rest of three LSBs and the round decision. Fig. 6 shows the round logic, which

determines the round up bit with certain L, G, R and S bits.

Fig. 5.Compound Addition and Rounding

 The largest exponent determined by the exponent compare logic is adjusted by subtracting the shift amount from the

LZA and adding the carry-out of the significand addition as shown in Fig. 7. The three significands generate overflow

up to 2 bits, two carry-out bits are used for the adjustment.

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0309060 8588

 L2,L1 and L0 are find out LSBs of significand result, then three bit adder sum round up operands. The carry out of

the addition is used for the final round up bit, which determines the upper significand result between sum and sum + 1.

Round logic using five round modes including round to zero, round to positive, round to negetive, round near even,

round near away.

Fig. 6.Round Logic

The three excep-tion cases specified in IEEE-754 Standard [1] are detected as

Fig. 7. Exponent Adjust Logic

IV. RESULT COMPARISON

 The dual reduction stage including a part of addition module. We can use any type of prefix adder suitable for that.

In this system using Ladner Ficher adder which is provide better performance than Kogge Stone adder. In Table 3

shows the comparison result of their logic level, fan out and wiring track.

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 9, September 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0309060 8589

Table 3.Comparison Result

 The proposed design performs a smaller significand addition compared to the Kogge Stone adder designs. Delay

reduction can possible without complementation by using the dual reduction. Also, the proposed design performs the

significand addition and rounding simultaneously so that the latency is significantly reduced. Finally, the shifters for

the alignment and normalization are overlapped with the exponent difference computation and LZD logic, respectively

so that only the last level of the shifter is in the critical path.

 Table 4 shows simulation difference between two adders. It shows requirement of LUTs, area, power. This result

shows Ladner Ficher require less area and power as compared to Kogge Stone adder.

Adder

No of LUTs Area(um2)

Power(uW)

Ladner Ficher 87 335.87 21.17

Kogge Stone 204 502.16 27.35

Table 4.Simulation Difference

V. CONCLUSION AND FUTURE WORK

 The improved architecture design and implementation for a fused floating point three term adder has been presented.

There are several design issues for the fused floating point three term adder: 1) Complex exponent processing and

significand alignment, 2) Complementation after the significand addition, 3) Large precision significand adder, 4)

Massive cancellation management, and 5) Complex round processing. To resolve those issues, several algorithms and

optimization techniques are applied: 1) A new exponent compare and significand alignment 2) Dual-reduction, 3) Early

normalization, 4) Three-input LZA and 5) Compound addition and rounding. The improved fused floating point three

term adder reduces the area, power consumption. The algorithms and optimizations described in this paper can be also

extended to fusedfloating point multi term adders with more than three operands. The improved fused floating point

three term adder will contribute to the next generation of floating point arithmetic unit design.

REFERENCES

1. R. K. Montoye, E. Hokenek, and S. L. Runyon, “Design of the IBM RISC system/6000 floating-point execution unit,” IBM J. Res. Develop., vol. 34, pp. 59–70,

1990.

2. S.F. Oberman, H. Al Twaijry, and M. J. Flynn, “The SNAP project: Design of floating point arithmetic units,” in Proc. 14th IEEE Symp. Computer Arithmetic, pp.

156–165,1997.

3. P. M. Seidel and G. Even, “Delay-optimized implementation of IEEE floating-point addition, ”IEEE Trans. Computers, vol. 53, no. 2, pp. 97–113, Feb. 2004.

4. A. Tenca, “Multi operand floating point addition,” in Proc. 21st Symp. Computer Arithmetic, 2009, pp. 161–168, 2009.

5. Y. Tao, G. Deyuan, F. Xiaoya, and R. Xianglong, “Three-operand floating-point adder,” in Pro. 12th IEEE Int. Conf. Comput. Inf. Technol., pp. 192–196,2012.

6. E. Hokenek, R. K. Montoye, and P. W. Cook, “Second-generation RISC floating point with multiply-add fused,” IEEE J. Solid-State Circuits, vol. 25, pp. 1207–

1213, 1990.

7. K. T. Lee and K. J. Nowka, “1 GHz leading zero anticipator using independent sign-bit determination logic,” inProc. Dig. Tech. Papers VLSI Circuits Symp., pp.

194–195,2000.

8. G. Even and P. M. Seidel, “A comparison of three rounding algorithms for IEEEfloating-point multiplication,”IEEE Trans. Comput., vol. 49, pp. 638–650, 2000.

9. P. Kornerup, “Correcting the normalization shift of redundant binary representations,” IEEE Trans. Computers, vol. 58, pp. 1435–1439, 2009.

BIOGRAPHY

Meera K A is a M tech Student in the VLSI & Embedded Department, College of IIET, M G University. She received

B tech degree in 2013 from ICET, M G University in Kerala.

