
                 

        
                  ISSN(Online): 2320-9801 

              ISSN (Print):  2320-9798                                                                                                                                 

                                                                                                               

International Journal of Innovative Research in Computer  

and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 3, Issue 9, September 2015                   

 

Copyright to IJIRCCE                                                        DOI: 10.15680/IJIRCCE.2015. 0309060                                                8582 

  

Improved Architecture for Floating Point 

Addition 
Meera K A 

M. Tech Scholar, Dept. of Electronics, IIET, M G University, Kerala, India 

 
ABSTRACT: This paper presents improved architectures for floating point addition. The improved architecture 

performs two additions in a single unit to achieve better performance and better accuracy. To improve the performance 

of the three term adder, several optimization techniques are applied. Including exponent compare and significand 

alignment, dual-reduction, early normalization, three input leading zero anticipation, compound addition and rounding. 

The proposed system reduce the area, delay and power consumption. In addition, the improved floating point three term 

adder  rounding only once, which improves the accuracy. 
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I. INTRODUCTION 

 

Most of the general purpose and application specific processors using floating point addition. Floating point 

arithmetic differentiated from fixed point arithmetic by its constant relative precision over a wide dynamic range. 

Floating point operations require complex processes, including alignment, normalization and rounding, which increases 

the area, power consumption and latency. To reduce the overhead, improved floating point units have been proposed, 

which execute several operations in a single unit to reduce the area, power consumption and latency. 

 

Traditional floating point two term adders are discussed in the previous work [1-3]. A network of the two term 

adders loses accuracy due to the multiple rounding one after each addition. Several issues for the design of the  floating 

point three term adder are discussed in the previous work [4], [5]. They are 1) Complex exponent processing and 

significand alignment, 2) Complementation after the significand addition, 3) Large precision significand addition, 4) 

Massive cancellation management, and 5) Complex round processing. Improved architecture, those issues are reduced 

by using several optimization techniques.  

 

Optimization techniques are applied not only to resolve the design issues but also to improve the performance: A 

new exponent compare and significand alignment scheme is proposed. The three exponent differences are computed in 

parallel and the significand alignment can be done using them. Simultaneous operations reduce the latency. Dual 

reduction used to generate positive and negative significand pairs. This will avoid  the complementation after the 

significand  addition and also reduce the latency. 

 

Significand addition size can be minimized using early normalization.It can possible to reduce the size of adder by 

half. By the use of Leading Zero Anticipation (LZA) hides the delay of 3:2 reduction trees. Compound addition used 

for fast rounding, with the help of round logic so that the delay is hidden.  

 

II. RELATED WORK 

 

    A traditional fused floating point three term adder [4], [5]. The traditional floating point three term adder  performs 

the two additions at once. The procedure of the traditional fused floating point tree term adder is: 

1. The exponent compare logic determines the largest exponent from three operands. Computes the differences 

between the largest exponent and each exponent. The significands are shifted by the amount of the 

corresponding exponent differences. 
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2. The aligned significands are inverted if the corresponding operations are subtraction. Then, the significands 

are passed to the 3:2 Carry Save Adders (CSA) are used to perform the reduction, which reduces the three 

significands to two. 

3. The significand addition is performed and the sum is complemented if it is negative. The LZA is performed in 

parallel with the significand addition and the significand sum is shifted by the amount of the LZA result. The 

carry out of the significand addition is passed to the sign logic and the exponent adjustment logic. 

4. Sign logic determines the sign bit of the sum. The sign bit is passed to the round logic. The normalized 

significand is rounded and post normalized. The carry out of the significand addition and the shift amount 

from the LZA are used for exponent adjustment. 

 

III. PROPOSED SYSTEM 

 

Proposed system introducing optimizations techniques that can be applied to improve the performance of floating 

point addition. The modified design for an improved fused floating point three term adder shown in fig.1 . In this 

section, five optimizations for the improved fused floating point three term adder are described: 1) A new exponent 

compare and significand alignment scheme, 2) Dual reduction to avoid the need for complementation after the 

significand addition, 3) Early normalization, 4) Three input LZA, and 5) Compound addition and rounding. 

 

 

 
Fig. 1.Improved Architecture for Floating Point Addition 
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A. Exponent Compare and Significand Alignment: 

    In order to reduce the latency, a new exponent compare and significand alignment logic is proposed as shown in 

Fig.2 . Exponent differences are computed using six subtraction expa-expb , expb-expa , expb-expc , expc-expb , expc-expa 

, expa-expc .   

    Positive differences are selected from exponent differences pair, that skipping the complementation after subtraction. 

Exponent difference used for significand shifter so that the exponent compare and significand alignment are 

overlapped. By this method delay can reduced. 

  

 
Fig. 2.Exponent Compare and Significand Alignment 

 

    The sticky logic is performed during the alignment to determine the guard, round and sticky bits. First and second 

bits under the LSBs are guard and round bits. Sticky bit can calculated by using OR tree. The largest exponent and 

aligned significands are determined by control logic shown result in Table 1. The aligned significands become 2f+ 6 

bits wide including two overflow bits, and guard, round and sticky bits, where f is the number of the significand. The 

exponent compare and significand alignment logic reduce the latency due to both operations done simultaneously. 

 

 
Table.1 .Exponent Compare Control Logic 
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B. Invert & Dual-Reduction: 

    Sign logic determines the effective sign bit using three sign bits and two opcodes. Opcodes are the first and second 

sign bits respectively.  

                 Sign_eff_a=sign_a  

                 Sign_eff_b=sign_a ⊕ (sign_b ⊕ op1) 

                 Sign_eff_c=sign_a ⊕ (sign_c ⊕ op2) 

    To avoid the increments after the inverters, 2 bits are extended to the LSB of the significands that are propagated to 

the significand addition to handle the cases that one or two significands are inverted by effectively adding 1 or 2, 

respectively. Table 2 shows the 2 bit extended LSBs based on the effective sign bits. 

 

 
Table.2 . Two Bit Extended LSBs for Complementation 

 

    Dual reduction avoids the complementation after significant addition. The two 3:2 CSAs produce the two reduced 

significand pairs. Between the two significand pairs, the positive pair is selected based on the sign of the significand 

sum. The part of addition in dual reduction carried out by the Ladner Ficher adder and which performs 

       pi=ai⊕bi  

       gi=aibi  

       Pi
j
=pipi-1 …………..pi+(2

j
-1)  

       Gi
j
 =gi+gi-1pi+………+gi-(2

j
 -1)pipi-1……..pi-(2

j
-2) 

       ai    and   bi are the i th bits of significands  

 

C. Early Normalization: 

    Large significands require a large significand addition and normalization, which is the biggest bottleneck of the 

floating point three term adder. Early normalization is applied to reduce this problem. The normalization is performed 

prior to the significand addition so that the significand adder size is reduced to f+1. The rest of lower bits f+7 are 

passed to rounding. By normalizing the significand pair prior to the significand addition, the round position is fixed so 

that the significand addition and rounding can be performed in parallel, which significantly reduces the latency of the 

critical path. 

D. Three Input LZA and Significand Comparison 

    The three-input LZA encodes the three inputs at once to skip the delay of the 3:2 CSA. The three-input LZA can be 

implemented by extending the two input LZA [6]. The three input LZA consists of two parts: 1) Pre encoding indicator 

vectors and 2) Leading Zero Detection (LZD) logic for generating the leading zero count.  

The pre encoder generate the W vector as 

W=A+B+C 

      Wi=ai+bi+ci  

      Wi       E {0,1,2,3} 

ai, bi, ci   are i th bit of significands 

       

The W vector can be represented by four elements 

            Pi
0 
=1 if wi=0 
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            Pi
1 
=1 if wi=1 

            Pi
2 
=1 if wi=2 

            Pi
3
=1 if wi=3 

The W Vector Is Pre-encoded Into Three Symbols  

           zi=pi
0
(p 

0
i-1+p

1
i-1)+p

3
i(p

2
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3
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                  ti=(pi
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0
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1
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F factor computation 

   fi=ti+1(gizi-1+zigi-1)+ti+1(zizi-1+gigi-1) 

    The F vector is passed to the LZD logic. The LZD produces the leading zero count which becomes the shift amount 

of the normalization. LZD logic producing the MSBs of the shift amount first is selected so that the LZD logic and the 

normalization shifter are overlapped [4]. Fig. 3 shows the 64 bit LZD tree, which used for the single precision. Lower 

levels of LZD logic overlap the delay for higher bits. 

 

 
Fig. 3.64 Bit LZD Tree 

 

     To find out the sign of significand sum significand comparison is used. In order to reduce the overhead, 

LZA pre-encoded bits can be used for the comparison tree[7]. 

signif_comp = zn+tnzn-1+tntn-1zn-2......+ tntn-1tn2……t1z0+tntn-1tn-2.....t0 

      n is the MSB position of significands. 

      Significand comparison used for sign decision. 

      sign=sign_a⊕signif_comp 

 

E. Compound Addition and Rounding 

    The three term adder have two aligned significands, which causes carry propagation from the lower part. Then 

overflow can occur up to 2 bits.  The significand addition result needs to be right shifted ,which changes the rounding 

position. Fig. 4 shows the overflows of the significand addition depends on the significand result selection and the 

rounding position. 

 

    Compound addition and rounding depends on [8] and compound addition determines the upper f bits including 

possible two overflow bits, and the rounding determines the rest of three LSBs and the round decision. The round logic 

requires computing the LSB, carry, guard, round and sticky bits (L, C, G, R and S) to determine if the significand sum 

is rounded up or not.In Fig.4 shows the rounding position depends on overflow bits.  
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Fig. 4.Significand Selection and Rounding 

 

    Compound addition and rounding shown in Fig.5. determines the upper f bits including possible two overflow bits, 

and the rounding determines the rest of three LSBs and the round decision. Fig. 6 shows the round logic, which 

determines the round up bit with certain L, G, R and S bits. 

 

 

 
 

Fig. 5.Compound Addition and Rounding 

 

    The largest exponent determined by the exponent compare logic is adjusted by subtracting the shift amount from the 

LZA and adding the carry-out of the significand addition as shown in Fig. 7.  The three significands generate overflow 

up to 2 bits, two carry-out bits are used for the adjustment. 
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    L2,L1 and L0 are find out LSBs of significand result, then three bit adder sum round up operands. The carry out of 

the addition is used for the final round up bit, which determines the upper significand result between sum and sum + 1. 

Round logic using five round modes including round to zero, round to positive, round to negetive, round near even, 

round near away. 

 

 
Fig. 6.Round Logic 

 

The three excep-tion cases specified in IEEE-754 Standard [1] are detected as 

 

 

 

  
Fig. 7. Exponent Adjust Logic 

 

IV.   RESULT COMPARISON 

 

    The dual reduction stage including a part of addition module. We can use any type of prefix adder suitable for that. 

In this system using Ladner Ficher  adder which is provide better performance than Kogge Stone adder. In Table 3 

shows the comparison result of their logic level, fan out and wiring track. 
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Table 3.Comparison Result 

 

    The proposed design performs a smaller significand addition compared to the Kogge Stone adder designs. Delay 

reduction can possible without complementation by using the dual reduction. Also, the proposed design performs the 

significand addition and rounding simultaneously so that the latency is significantly reduced. Finally, the shifters for 

the alignment and normalization are overlapped with the exponent difference computation and LZD logic, respectively 

so that only the last level of the shifter is in the critical path. 

 

    Table 4 shows simulation difference between two adders. It shows requirement of LUTs, area, power. This  result 

shows Ladner Ficher require less area and power as compared to Kogge Stone adder. 
 

Adder 

 

No of LUTs   Area(um2 )  

 

Power(uW)  

 

Ladner Ficher 87 335.87 21.17 

Kogge Stone 204 502.16 27.35 

 

Table 4.Simulation Difference 

 

V. CONCLUSION AND FUTURE WORK 

 

    The improved architecture design and implementation for a fused floating point three term adder has been presented. 

There are several design issues for the fused floating point three term adder: 1) Complex exponent processing and 

significand alignment, 2) Complementation after the significand addition, 3) Large precision significand adder, 4) 

Massive cancellation management, and 5) Complex round processing. To resolve those issues, several algorithms and 

optimization techniques are applied: 1) A new exponent compare and significand alignment 2) Dual-reduction, 3) Early 

normalization, 4) Three-input LZA and 5) Compound addition and rounding. The improved fused floating point three 

term adder reduces the area, power consumption. The algorithms and optimizations described in this paper can be also 

extended to fusedfloating point multi term adders with more than three operands. The improved fused floating point 

three term adder will contribute to the next generation of floating point arithmetic unit design. 
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