

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 3, March 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0403243 4461

Techniques and Algorithm for Clone
Detection and Analysis

Snehal R. Jadhav1, Sachin B. Wakurdekar2

M. Tech Student, Department of Computer Technology, BVDUCOE, Pune, India1

Assistant Professor, Department of Computer Technology, BVDUCOE, Pune, India2

 ABSTRACT: For maintenance and development of source code, several studies have exposed that the replica of a
code or code clone in software technology are possibly risky. While this is the severe difficulty within software
industry, throughout refactoring, there is small bit support for removing software clones. A large demanding difficulty
is association and inclusion the replicated code, particularly later starting introduction to the software clone they are
going through the numerous alterations in them. This paper presents a novel algorithm in which a couple of clone is
mechanically reviewed and exclusive of altering the agenda performance that clone couple is re-factored securely. The
differentiations shown in the clones are studied in this approach and those are securely parameterized with no incidence
of any side cause. Novel of the gain of this approach is that the insignificant computational expenditure. Lastly, a large-
scale experiential study has been carried out on above a million clone couples noticed and this discovery is completed
by four dissimilar clone detection tools. This has been conducted in nine open source projects for supplying how re-
factorability is exaggerated by dissimilar clone assets and tool arrangement selections.

KEYWORDS: Code duplication, Software clone management, Clone refactoring, Re-factorability assessment,
Empirical study.

I. INTRODUCTION

Within several software industries, the complex problem has been acknowledged that the source code
replication is grave difficulty. Code replication has awful result on the software product protection as well as
development [1], [2]. In most recent few years dissimilar study areas have industrial numerous practices which are
capable to discover and examine the replicated code [3]. along with latest study is concentrated on the clone managing
actions [4], which comprise detecting clones in the past of a project, examining the reliability of alterations to the
clones, renew additionally clone set as the assignment develop, as well as assigning the priority to the refactoring of the
clones. In the accumulation to beyond improvement effort, result of the replicated code on protection attempt as well as
rate, error-proneness because of incompatible changes, software faults, change-proneness, and modify dissemination
has been examined empirically by means of numerous studies. There is a requirement of software or hardware tools
which can be mechanically investigate software clones to verify whether they can be securely re-factored with no
altering the activities of the source code. One of the vital nevertheless lost characteristics from the clone organization is
re-factorability examination. Whenever the programmers are responsive in investigating refactoring prospects for
replicated code it can be used to clean the clones which can be openly re-factored. This is the technique by which
maintainers can concentrate on the different sections of the source code which can instantly advantage from the
refactoring, so hence thus reasons development in the defensibility. The paper encompasses an novel algorithm which
takes two clone fragments as a input that are noticed from the several tool plus it pertains next three stages in order to
verify that they can be re-factored with no several part causes or not.

Here we detect code cloning using code attributes which are given below:
 Number of line counts.
 Number of bracket counts.
 Number of import counts.

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 3, March 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0403243 4462

Stage 1: this stage discovers source code fragments within the same nesting arrangements inside those input
clones that provide as possible as refactoring chances. If it divides general nesting arrangement then it considers that
two code fragments could be incorporated, plus hence re-factored.

Stage 2: In this stage, algorithm discovers amapping among the comments of the source code fragments

which enhance number of mapped declarations as well as reduces number of dissimilarity among the mapped
declarations through discovering the investigate gap of substitute mapping results.

Stage 3: In third stage, the dissimilarity inside the reviews declarations which were noticed in the earlier

stages is studied beside the set of prerequisites. This producer is completed in order to decide whether it can be
parameterized with no altering the program performance or not.

The rest of this paper is ordered as follows: In section 2 we will explore the two core program structure.

Section 3 defines problem statement of proposed system. Section 4 explores motivation behind clone detection. Section
5 define main objective of proposed system. Section 6 defines the proposed system with two different inputs for
assessing the refactorability. We draw a conclusion in section 7.

II. RELATED WORK

Following are the two core program structures that are used in this approach:

1. Program Structure Tree.
2. Program Dependence Graph.

1. Program Structure Tree
This Program Structure Tree [5] was established by Johnson et al. as a hierarchical demonstration of program

formation and this formation is stands on solo-entry solo-exit (SESE) areas of this control flow graph. The nesting
association of SESE regions and chains of sequentially composed SESE regions are captured by essentially PST.

2. Program Dependence Graph
The Program Dependence Graph [6] is a directed graph which includes of different type of edges. In this PDG,

the nodes indicate the declarations of a task or a scheme, plus the edges indicate manage as well as data flow
dependencies among comments. In this way PDG illustration is used in two ways. In first way, the composite variables
are introduced which represents the state of objects which are referred in body of method and it also creates data
dependencies for these variables. In second way, two more types of edges are added in the PDG, which are helpful in
the examination of preconditions. These two types of edges are: anti-dependencies and output dependencies.

III. MOTIVATION

The large complex difficulty within software industries is refactoring, but there can be small bit of support for
removing software product clones. A big demanding difficulty is a association plus inclusion of the replicated source
code, particularly behind first introduce to the software clone they are going by means of the number of alterations in
that. In this novel algorithm it mechanically reviews whether a clone couple could be securely refectory whether as well
as which is also with no altering a actions of the software source code.

IV. PROPOSED SYSTEM

There are two dissimilar types of input are given by means of this algorithm:
1) Two source code fragments are confirmed as clones by the clone discovery tool inside the structure of the

identical technique, or dissimilar techniques.

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 3, March 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0403243 4463

2) Two technique statements measured to be replicated, or it can include replicated source code fragments
anywhere within their structures.

 Three main stages for reviewing the refactorability in this algorithm:

1) Nesting Structure Matching [1]:
In this first stage, nesting arrangement of the input clone fragments is investigated that is valuable in the

discovering maximum isomorphic sub trees. It can unspecify that two source code fragments can be unified simply if
they have an equal nesting arrangement. Every matched sub tree couple would be additional examined as the
disconnect clone refactoring chance in the coming stages. When we used nesting arrangement matching function it will
offer the replicated code as output by referring two files.

2) Statement Mapping [1]:
In this statements removed from the prior stage inside the sub tree couples are mapped in divide-and-conquer

manner. They obtain benefit of equal nesting arrangement among the isomorphic sub trees; worldwide mapping
difficulty is partition within slight sub difficulty. Equivalent Program Dependence sub graphs are mapped through
regarding a Maximum Common Sub graph (MCS) algorithm for every sub-problem. These sub explanations are mutual
to provide the worldwide mapping resolution within last part. When we hit it off on Statement mapping as well as
Statistics then it will demonstrate Predictive Code Clone Detector Frame. It will also show every output by submitting
two files.

3) Precondition Examination [1]:
Different set of conditions concerning the conservation of a program action are studied based on dissimilarity

among the mapped comments in worldwide explanation, and also the declarations that can have not been mapped. If
there is no conditions are desecrated, the clone fragments equivalent with the mapped declarations could be securely
refactored, and therefore those are measured to be refactored.

Following Fig 1. Shows the stages declared above:

Fig 1. Proposed Refactorability Analysis Approach.

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 3, March 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0403243 4464

Here we have calculated different number of lines, number of brackets as well as number of imports count by
using two code fragments. It Also shows given code fragments are identical nesting structure or not.

 Fig.2. “File” - To select code fragment 1 & 2 Fig.3. Nesting structure mapping”-to check selected codes copied or not.

 Fig.4. Similar – to check similarity Fig.5. “Statement mapping & statistics”-to check all outputs

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 3, March 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0403243 4465

 Fig.6. To check precondition Term Fig 7. “No of line”- no of line count for code 1

 Fig.8. “No of line”- no of line count for code 2 Fig.9. “No of bracket”- no of bracket count for code 1

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 3, March 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0403243 4466

 Fig.10. “No of bracket”- no of bracket count for code 2 Fig.11. “No of import”- no of import counts for code 1

 Fig.12. “No of import”- no of import count for code 2. Fig.13. Analysis

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 3, March 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0403243 4467

 Fig.13.1. Analysis Fig.14. Final report

V. CONCLUSION

This novel approach establish a vital quality in clone detection organization i.e. refactorability study that was
unconfirmed formerly. To achieve this different objective, a algorithm which initially equivalents to the declarations of
the clones in such a manner which reduces the amount of dissimilarity within them. Following this, dissimilarity is
studied in opposition to a set of fundamentals to decide or not they could be parameterized with no altering the source
code performance. If there is no condition destructions are established, then it offers tool which support for the
mechanical refactoring of the clones.

REFERENCES

1. Nikolaos Tsantalis, Member, IEEE, Davood Mazinanian, and Giri Panamoottil Krishnan “Assessing the Refactorability of Software Clones” ,
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH 2015

2. G. P. Krishnan and N. Tsantalis, “Unification and refactoring of clones,” in Proceedings of the IEEE Conference on Software
Maintenance,Reengineering and Reverse Engineering (CSMR-WCRE),2014 Software Evolution Week, 2014, pp. 104–113.

3. C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation of code clone detection techniques and tools: A qualitativeapproach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470 – 495, 2009.

4. C. Roy, M. Zibran, and R. Koschke, “The vision of software clone management: Past, present, and future (keynote paper),”in Proceedings of
the IEEE Conference on Software Maintenance,Reengineering and Reverse Engineering, 2014 Software Evolution Week, 2014, pp. 18–33.

5. R. Johnson, D. Pearson, and K. Pingali, “The program structure tree: Computing control regions in linear time,” in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, 1994, pp. 171–185.

6. J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph and its use in optimization,” ACM Transactions on
Programming Languages and Systems, vol. 9, no. 3, pp. 319–349, Jul. 1987.

