

e-ISSN: 2320-9801 | p-ISSN: 2320-9798

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH

IN COMPUTER & COMMUNICATION ENGINEERING

Volume 11, Issue 6, June 2023

INTERNATIONAL STANDARD SERIAL NUMBER INDIA

0

Impact Factor: 8.379

9940 572 462

6381 907 438

🛛 🖂 ijircce@gmail.com

📃 🥝 www.ijircce.com

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 |

|| Volume 11, Issue 6, June 2023 ||

| DOI: 10.15680/IJIRCCE.2023.1106034 |

Survey paper on Plant Disease Detection Using Hybrid Approach

Nilay Vivek Oak, N.S. Bagal

Department of Computer Engineering, Padmabhooshan Vasantdada Patil Institute of Technology, Pune, India

ABSTRACT-- Plant infections adversely affect the agrarian area. These illnesses bring down the efficiency of the yield and gives tremendous misfortune to the ranchers. For accuracy horticulture it is vital to recognize sicknesses in the plants to save agrarian yield and limiting the utilization of pesticides. Detection of diseases at early stage can be done using Image processing domain. Detection of diseases like) Apple Scab, b) Squash Powdery Mildew, c) Apple healthy, d) Blueberry healthy, e) Corn (maize) Cercospora leaf spot Gray leaf spot, f) Grape Black Rot, g) Grape Healthy, h) Grape Leaf Blight, i) Orange Huanglongbing (Citrus Greening), j) Peach Bacterial Spot, k) Bell Pepper Bacterial Spot, l) Potato Late Blight, m) Raspberry healthy, n) Strawberry Leaf Scorch, o) Tomato Leaf Mold, p) Tomato Mosaic with limited set of supervised data. can be done using Deep Learning and Machine Learning techniques. Convolution Neural Network (CNN) can be used for feature extraction, extracting features for the plant disease images. Further for the classification of diseases various machine learning algorithms such as Random Forest.

KEYWORDS- Plant Disease Detection, Convolutional Neural Network, Neural Network, Deep Learning, Image Processing, Random Forest

I. INTRODUCTION

Farming is one of the main areas in the Indian economy. It is the foundation of the country's advancement. One of the serious issues looked by the horticulture area is tracking down the sicknesses in the plants. In the days of yore, illness distinguishing proof is finished by experienced individuals. In far off regions, it is undeniably challenging for ranchers to contact the specialists. Environmental change is additionally one of the major explanations behind plant infections. In huge ranches, assuming the illness is not perceived brilliantly there is a gigantic misfortune in farming creation. In the help community, they can't see the issue precisely looked by the rancher thus in some cases they might give wrong ideas to the ranchers with respect to the plant illness. This may likewise prompt the obliteration of the yield. These days, there is colossal development in the Machine Learning (ML) calculations, Man-made reasoning, and Computerized Picture Handling (Plunge) methods. To help the ranchers, it is vital to distinguish various sicknesses in plants during the beginning phase. In this way, there is a need to coordinate these new advances to incorporate into present day techniques. The harvest yield will be diminished due to the spreading of sicknesses in plants. These infections might cause a change in looks of the plant, harm the plants, shows the impact on the variety and surface of the leaves and its impact on the natural products, and so forth. There are a few likenesses between the qualities of the infections. So it is extremely hard for the ranchers to recognize the illnesses in the plants with their unaided eye and they can't envision the seriousness of the illness totally and thus on occasion it might prompt outcome in wrong infection recognition. Due to the less experienced or unpracticed ranchers, there may be issues in managing the illnesses of the plants. Subsequently, there is a need to create strategies which will help the ranchers to recognize the illnesses in beginning phases and furnish the answers for manage those illnesses.

II. LITERATURE SURVEY

G. Madhulatha et al. [1] stated that the principally center around finding the plant infections and which will lessen the harvest misfortune and consequently expands the creation proficiency. Our proposed work identifies the side effects of plant illnesses at the exceptionally starting stage and orders plant infection based on the side effects utilizing a Profound Learning (DL) procedure.

Sunil S. Harakannanavar et al. [2] proposed that the tests of tomato leaves having messes are thought of. With these problem tests of tomato leaves, the farmers will effortlessly find the infections in view of the early side effects. Right off the bat, the examples of tomato leaves are resized to 256×256 pixels and afterward Histogram Evening out is utilized to work on the nature of tomato tests. The K-implies bunching is brought for apportioning of data space into Voronoi cells. The limit of leaf tests is extricated utilizing shape following. The various descriptors viz., Discrete Wavelet Change, Head Part Investigation also, Dark Level Co-event Grid are utilized to remove the enlightening

International Journal of Innovative Research in Computer and Communication Engineering

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| <u>www.ijircce.com</u> | |Impact Factor: 8.379 |

|| Volume 11, Issue 6, June 2023 ||

| DOI: 10.15680/IJIRCCE.2023.1106034 |

elements of the leaf tests. At last, the extricated highlights are grouped utilizing AI approaches, for example, Backing Vector Machine (SVM), Convolutional Brain Organization (CNN) and K-Closest Neighbor (K-NN). The precision of the proposed model is tried utilizing SVM (88%), K-NN (97%) and CNN (99.6%) on tomato cluttered examples.

Shima Ramesh [3] proposed that this paper utilizes Irregular Backwoods in distinguishing among sound and sick leaf from the informational collections made. Our proposed paper incorporates different periods of execution specifically dataset creation, include extraction, preparing the classifier and characterization. The made datasets of ailing and solid leaves are aggregately prepared under Irregular Woodland to order the infected and solid pictures. For separating highlights of a picture author use Histogram of an Arranged Inclination (Hoard). By and large, utilizing AI to prepare the enormous informational collections accessible openly gives us an unmistakable method for distinguishing the illness present in plants in a giant scope., Decision tree classification algorithm.

Sammy V. Militante [4] stated that in this paper, the framework was intended to distinguish and perceive a few plant assortments explicitly apple, corn, grapes, potato, sugarcane, and tomato. The framework can additionally recognize a few infections of plants.

III PROPOSED METHOD AND ALGORITHM

A. Proposed Methodology:

In a proposed system, we are proposing experiment on plant disease like) Apple Scab, b) Squash Powdery Mildew, c) Apple healthy, d) Blueberry healthy, e) Corn (maize) Cercospora leaf spot Gray leaf spot, f) Grape Black Rot, g) Grape Healthy, h) Grape Leaf Blight, i) Orange Huanglongbing (Citrus Greening), j) Peach Bacterial Spot, k) Bell Pepper Bacterial Spot, l) Potato Late Blight, m) Raspberry healthy, n) Strawberry Leaf Scorch, o) Tomato Leaf Mold, p) Tomato Mosaic. We combine the two algorithms which are a Convolutional Neural network for feature extraction and classification of plant disease from random forest. We are going to solve accuracy issue in diagnosis of disease with accurate stage predictions.

B. Algorithms

1. CNN

In this proposed research paper Convolution Neural Network will be utilized for highlight extraction. CNN can bring precise highlights from the picture information, as opposed to taking the elements individually. Created loads are separated from the various layers of CNN, for example, convolution layers, pooling layers, actuation layer and completely associated layers. Convolution layer is the vital job of this organization, which does the extraction of the highlights from the preparation picture information.

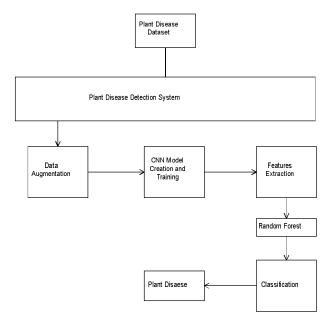
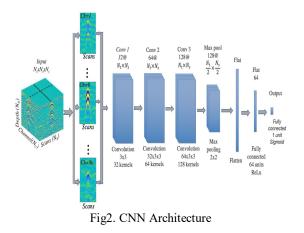


Fig1. Proposed Architecture


International Journal of Innovative Research in Computer and Communication Engineering

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | |Impact Factor: 8.379 |

|| Volume 11, Issue 6, June 2023 ||

| DOI: 10.15680/IJIRCCE.2023.1106034 |

2. Random Forest

An irregular woodland is an AI method that is utilized to tackle relapse and grouping issues. It uses outfit realizing, which is a strategy that joins numerous classifiers to give answers for complex issues. An irregular woods calculation comprises of numerous choice trees. The 'woods' created by the irregular timberland calculation is prepared through stowing or bootstrap totaling. Sacking is a group meta-calculation that works on the exactness of AI calculations. The (random forest) algorithm establishes the outcome based on the predictions of the decision trees. It predicts by taking the average or mean of the output from various trees. Increasing the number of trees increases the precision of the outcome.

IV. CONCLUSION

We are going to invent multi plant disease detection system over machine learning and CNN techniques which solves existing accuracy problem as well as reduce death rates by type diseases of plants like Apple Scab, b) Squash Powdery Mildew, c) Apple healthy, d) Blueberry healthy, e) Corn (maize) Cercospora leaf spot Gray leaf spot, f) Grape Black Rot, g) Grape Healthy, h) Grape Leaf Blight, i) Orange Huanglongbing (Citrus Greening), j) Peach Bacterial Spot, k) Bell Pepper Bacterial Spot, l) Potato Late Blight, m) Raspberry healthy, n) Strawberry Leaf Scorch, o) Tomato Leaf Mold, p) Tomato Mosaic. For future work, we can implement this technique on some more diseases with rich dataset. Increasing the number of diseases and dataset used for the process can improve the accuracy.

REFERENCES

1] G. Madhulatha, O. Ramadevi "Recognition of Plant Diseases using Convolutional Neural Network" Proceedings of the Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC).

2] Sunil S. Harakannanavar a,*, Jayashri M. Rudagi b, Veena I Puranikmathb, Ayesha Siddiquaa, R Pramodhini "Plant leaf disease detection using computer vision and machine learning algorithms" Global Transitions Proceedings 3 (2022) 305–310.
3] Shima Ramesh, Mr. Ramachandra Hebbar, Senior Scientist, ISRO, RRSC "Plant Disease Detection Using Machine

Learning" 2018 International Conference on Design Innovations for 3Cs Compute Communicate Control

4] Sammy V. Militante1, Bobby D. Gerardoij, Nanette V. Dionisio "Plant Leaf Detection and Disease Recognition using Deep Learning" 2019 IEEE Eurasia Conference on IOT, Communication and Engineering.

5] Tan Soo Xian2, Ruzelita Ngadiran "Plant Diseases Classification using Machine Learning" The 1st International Conference on Engineering and Technology (ICoEngTech) 2021.

6] Vimal K. Shrivastava, Monoj K. Pradhan, Monoj K. Pradhan "Application of Pre-Trained Deep Convolutional Neural Networks for Rice Plant Disease Classification" Proceedings of the International Conference on Artificial Intelligence and Smart Systems (ICAIS-2021).

7] S.Ramesh D.vydeki "Rice Blast Disease Detection and Classification using Machine Learning Algorithm" 2018 2nd International Conference on Micro-Electronics and Telecommunication Engineering.

8] Shreya Ghosal1, Kamal Sarkar "Rice Leaf Diseases Classification Using CNN With Transfer Learning" Computer Science Department Proceedings of 2020 IEEE Calcutta Conference (CALCON).

9] J. P. Shah, H. B. Prajapati and V. K. Dabhi, "A survey on detection and classification of rice plant diseases," In 2016 IEEE International Conference on Current Trends in Advanced Computing (ICCTAC). Bangalore, India, pp. 1–8, March 2016.

10] J. Chaki, R. Parekhand, S. Bhattacharya, "Plant leaf recognition using texture and shape features with neural classifiers," Pattern Recognit. Lett., 58, 2015, pp. 61–68.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH

IN COMPUTER & COMMUNICATION ENGINEERING

📋 9940 572 462 应 6381 907 438 🖂 ijircce@gmail.com

www.ijircce.com