

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501111 548

A General Approach to Scalable Buffer Pool
Management

Milind Madhukar Kulkarni, A.V.Mophare

Student, Department of CSE, N.B.N.C.O.E, Solapur, India

Asst. Professor, Department of CSE, N.B.N.C.O.E, Solapur, India

ABSTRACT: In high-end data processing systems, such as databases, the execution con -currency level rises
continuously since the introduction of multicore processors. This happens both on premises and in the cloud. For these
systems, a buffer pool management of high scalability plays an important role on system overall performance. The
scalability of buffer pool management is largely deter-mined by the data replacement algorithm, which is a major
component in buffer pool management. It can seriously degrade the scalability if not designed and implemented
properly. The root cause is its use of lock-protected data structures that incurs high contention with concurrent accesses.
A common practice is to modify the replacement algorithm to reduce the contention on the lock(s), such as
approximating the LRU replacement with the clock algorithm or partitioning the data structures and using distributed
locks. Unfortunately, the modification usually compromises the algorithm’s hit ratio, a major performance goal. It may
also involve significant effort to overhaul the original algorithm design and implementation. A general solution to
improve the scalability of buffer pool management using any replacement algorithms for the data processing systems
on physical on-premises machines and virtual machines in the cloud. Instead of making a difficult trade-off between the
high hit ratio of a replacement algorithm and the low lock contention of its approximation, design a system framework,
called Buffer Pool that eliminates almost all lock contention without requiring any changes to an existing algorithm. In
Buffer Pool, use a dynamic batching technique and a prefetching technique to reduce lock contention and to retain high
hit ratio.Our proposed working is on optimal page replacement algorithm for improving performance.

KEYWORDS: Buffer Pool Management, Replacement Algorithm, Lock Contention, Multi-Core, Optimal Page
Replacement Algorithm.

I. INTRODUCTION

Data processing systems, such as databases, mostly use high-end servers with many cores for high performance. In the
cloud, an Amazon RDS database can have up to 32 virtual CPUs (vCPUs) on such a server, a large number of worker
threads run simultaneously to maximize computing power of the system. With the high computing power, the overall
system performance is frequently determined by how fast the worker threads can access the data they process. As a
common procedure, a data-processing system maintains a buffer pool in the user memory space for its worker threads
to cache the data sets that are actively accessed. The system carefully manages the buffer pool using experienced
policies to minimize costly disk I/O operations.
Worker threads access the buffer pool synchronously at a very high frequency. With the increasing number of cores (or
vCPU count), the buffer pool management must be highly scalable and efficient to effectively manage with the growing
processing concurrency. Otherwise, it can become a serious system bottleneck, leading to significant performance
reduction. In fact, that type performance problems have been widely observed in various systems, such as PostgreSQL,
MySQL, and Oracle. The performance problem is caused by the contention on the locks used in the buffer
management, particularly the lock that protects a core data structure used for data replacement technique. The
technique makes decisions on which data pages should be cached in memory to absorb effectively requests for on-disk
data. To implement the technique, the threads maintain a data structure to track their data-access history. Update the
data structure in response to page accesses so that replacement decisions can be made based on that history recorded in
the data structure. To guarantee the integrity of the data structure, the updates must be made in a serialized trend. Thus,

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501111 549

a lock is necessary to synchronize the updates. Lock contention occur when the lock is held by one worker thread and
other threads must wait in the form of busy-waiting and/or context switches. Many replacement algorithms, techniques
and their implementations have been proposed. They construct and manage deep page access history to maximize hit
ratios and minimize the cost incurred by disk I/O operations. These algorithms, techniques usually take actions upon
each I/O access, either a hit or a miss in the buffer, which mainly include a sequence of updates in the data structure to
record the access history. Though the action are usually designed to be simple and efficient to minimize overhead, in a
production system where a large number of threads access on-disk data frequently and concurrently, the high frequency
and concurrency may lead to serious lock contention. Performance degradation occur by lock contention can be
significant in large-scale systems.
This subject has been a major research problem for years.

II. LITERATURE SURVEY

Sr. No Author/Paper Name Proposed System Refer Points
1 X. Ding, P. B. Gibbons, M.

A. Kozuch, and J. Shan,
“Gleaner: mitigating the
blocked-waiter wakeup
problem for virtualized
multicore applications,” in
USENIX ATC 2014, 2014,
pp. 73–84.

The paper systematically analyzes the
cause of the BWW problem and studies
its performance issues, including
increased execution times, reduced
system throughput, and performance
unpredictability. To deal with these
issues, the paper proposes a solution,
Gleaner, which integrates idling
operations and imbalanced scheduling as
mitigation to this problem.

Study the Gleaner as a
solution, which combines
resource retention
approaches with idling
operations and
consolidation scheduling.

2 A. Da Zheng and A. S.
Szalay, “A parallel page
cache: Iops and
Caching for multicore
systems,” in USENIX Hot
Storage 2012.

Present a set-associative page cache for
scalable parallelism of IOPS in multicore
systems. The design eliminates lock
contention and hardware cache misses by
partitioning the global cache into many
independent page sets, each requiring a
small amount of metadata that fits in few
processor cache lines. We extend this
design with message passing among
processors in no uniform memory
architecture (NUMA).

Study NUMA by
partitioning the cache by
processor and using
message passing to avoid
remote memory access.
The outcome is a system
that tracks the scalable
performance of direct I/O
(no caching) for up to 48
cores, while preserving the
hit rates of the Linux page
cache.

3 M. Yui, J. Miyazaki, S.
Uemura, and H. Yamana,
“Nb-GCLOCK: A non-
blocking buffer
management based on the
generalized CLOCK,” in
ICDE 2010, 2010, pp. 745–
756.

Propose a non-blocking buffer
management scheme based on a lock-free
variant of the GCLOCK page
replacement algorithm. Concurrent
access to the buffer management module
is a major factor that prevents database
scalability to processors. Therefore, we
propose a no blocking scheme for buffer
fix operations that fix buffer frames for
requested pages without locks by
combining Nb-GCLOCK and a non-
blocking hash table.

Study a non-blocking
buffer management
scheme based on a lock-
free variant of the
GCLOCK page
replacement algorithm.

4 W. Wang, “Storage
management for large scale

A self-tuning algorithm is proposed to
automatically tune the page cleaning

Study self-tuning
algorithm to automatically

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501111 550

systems,” Ph.D. dissertation,
Department of Computer
Science, University of
Saskatchewan, Canada,
2004. [30] L. Huang and T.
cker Chiueh,

activity in the buffer cache management
algorithm by monitoring the I/O
activities of the buffer cache. This
algorithm achieves performance
comparable to the best manually tuned
system.

tune the page cleaning
activity in the buffer cache
management.

5 S. Jiang, X. Ding, F. Chen,
E. Tan, and X. Zhang,
“DULO: an effective buffer
cache management scheme
to exploit both temporal and
spatial locality,” in FAST
2005, pp. 8–8.

Propose a scheme called DULO (DUal
LOcality), which exploits both temporal
and spatial locality in buffer cache
management. Leveraging the filtering
effect of the buffer cache, DULO can
influence the I/O request stream by
making the requests passed to disk more
sequential, significantly increasing the
effectiveness of I/O scheduling and
perfecting for disk performance
improvements.

Study a new and effective
memory management
scheme, DULO, which can
significantly improve I/O
performance by exploiting
both temporal and spatial
locality.

III. METHODOLOGY

Background on Buffer Management
In a data processing system, a buffer stores a collection of buffer pages of fixed sizes and is shared by worker threads.
Data pages read from hard disks are cached in the buffer for possible reuses. A buffer manager uses some data
structures such as linked lists and mapping tables (e.g. hash tables or trees) to organize the metadata of the buffer pages,
including identifiers of the cached data pages, status, and pointers to form linked lists and mapping tables.

Fig.1. The diagram of a buffer manager.

The buffer manager is a central component frequently used by all worker threads upon each page request. Simultaneous
updates on its data structures have to be carried out in a controlled fashion to maintain its data structure integrity.
Usually lock synchronization is used for this purpose.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501111 551

The use of locks to synchronize mapping table searching and updating does not limit system scalability. The mapping table usually
uses distributed locking or hierarchical locking. At the same time, since the mapping table is not changed upon hits, concurrent
accesses are allowed upon hits, and exclusive accesses are only required upon misses, which are usually rare, compared to hits. Both
factors above help maintaining high scalability. For example, in a hash table, the metadata of buffer pages are distributed into a large
number of small hash buckets, each of which is protected by a local read/write lock. Even when multiple threads need to access the
same bucket, they can search the bucket concurrently. Only when searches fail (i.e., misses), the exclusive accesses to a bucket are
required.
We focus on the lock contention in the replacement management because (1) the replacement management may use one lock for its
entire data structure, which is a single point of hot spot, and (2) most replacement algorithms require an update of their data
structures upon every page access.
Therefore, a thread has to acquire the lock for every page request to exclusively conduct the replacement management operations.
The highly contented lock may dramatically degrade system performance on a multicore/multiprocessor system.

IV. PROPOSED METHODOLOGY

This paper provides a general solution to improve the scalability of buffer pool management using optimal replacement algorithms
for the data processing systems on physical on-premises machines and virtual machines in the cloud. Instead of making a difficult
trade-off between the high hit ratio of a replacement algorithm and the low lock contention of its approximation, we design a system
framework, called optimal page replacement algorithm that eliminates almost all lock contention without requiring any changes to
an existing algorithm.
The use of locks to synchronize mapping table searching and updating does not limit system scalability. The mapping table usually
uses distributed locking or hierarchical locking. At the same time, since the mapping table is not changed upon hits, concurrent
accesses are allowed upon hits, and exclusive accesses are only required upon misses, which are usually rare, compared to hits.

V. PROPOSED SYSTEM ARCHITECTURE

Fig2. Proposed System Architecture

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501111 552

A. OPTIMAL PAGE REPLACEMENT ALGORITHM

The best possible page replacement algorithm is easy to describe but impossible to implement. It goes like this. At the
moment that a page fault occurs, some set of pages is in memory. One of these pages will be referenced on the very
next instruction (the page containing that instruction). Other pages may not be referenced until 10, 100, or perhaps 1000
instructions later. Each page can be labeled with the number of instructions that will be executed before that page is
first referenced.The optimal page algorithm simply says that the page with the highest label should be removed. If one
page will not be used for 8 million instructions and another page will not be used for 6 million instructions, removing
the former pushes the page fault that will fetch it back as far into the future as possible.The optimal page algorithm
simply removes the page with the highest number of such instructions implying that it will be needed in the most
distant future. This algorithm was introduced long back and is difficult to implement because it requires future
knowledge of the program behavior. However it is possible to implement optimal page replacement on the second run
by using the page reference information collected on the first run.

B. ADVANTAGES OF OPTIMAL PAGE REPLACEMENT ALGORITHM:-

i) Lowest page fault rate.
ii) Never suffers from Belady’s anomaly.
iii) Twice as good as FIFO Page Replacement Algorithm.

C. DISADVANTAGES OF OPTIMAL PAGE REPLACEMENT ALGORITHM:-

i) Difficult to implement.
ii) It needs forecast i.e. Future knowledge.

In this algorithm, pages are replaced which are not used for the longest duration of time in the future.
Let us consider page reference string 7 0 1 2 0 3 0 4 2 3 0 3 2 and 4 page slots.
Initially all slots are empty,
so when 7 0 1 2 are allocated to the empty slots —> 4 Page faults
0 is already there so —> 0 Page fault.
When 3 came it will take the place of 7 because it is not used for the longest duration of time in the future.—>1 Page
fault.
0 is already there so —> 0 Page fault..
4 will take place of 1 —> 1 Page Fault.

Now for the further page reference string —> 0 Page fault because they are already available in the memory.
Optimal page replacement is perfect.

VI. EXPERIMENTAL SETUP

We have evaluated the scalability of the systems by setting the buffer size equal to the data sizes of the workloads, and
have shown that lock contention can be reduced significantly by combining the batching and pre fetching techniques.
However, buffer sizes are usually much smaller than data sizes in real systems. Thus, the ability of the systems to
reduce costly I/O operations by improving hit ratios is also critical to the overall performance. In this section, we
evaluate the overall performance of three systems pgClock, pg2Q, and pgBat-Pre on the Power Edge 1900 using 8
cores when we change the buffer size from 32MB to 1024MB, and let the systems issue direct I/O requests to bypass
the operating system buffer cache. As the data set sizes of DBT-1 and DBT-2 are 6.8GB and 5.6GB respectively, not all
the accesses can be satisfied from the buffer.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501111 553

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501111 554

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501111 555

VII. CONCLUSION

In this paper, we address the scalability issue due to lock contention in the implementation of replacement algorithms
for the management of buffer cache. We proposed an efficient and scalable framework, optimal page replacement
algorithm for page replacement. Without algorithm modification, the performance advantage of the original
replacement algorithms will not be compromised, and human effort is also minimized. Existing approach used the
technique BP-wrapper, in which the dynamic batching and the prefetching techniques can be used with any
replacement algorithms without modification of the algorithms. Without algorithm modification, the performance
advantage of the original replacement algorithms will not be compromised, and human effort is also minimized. The
only cost of the framework is a small FIFO queue for each transaction-processing thread, which keeps the thread’s most
recent access information. So our propose work will use the Optimal Page Replacement Algorithm which is the best
possible page replacement algorithm.

REFERENCES

[1] X. Ding, P. B. Gibbons, M. A. Kozuch, and J. Shan, “Gleaner: mitigating the blocked-waiter wakeup problem for virtualized multicore
applications,” in USENIX ATC 2014, 2014, pp. 73–84.
[2] A. Da Zheng and A. S. Szalay, “A parallel page cache: Iops and caching for multicore systems,” in USENIX Hot Storage 2012.
[3] M. Yui, J. Miyazaki, S. Uemura, and H. Yamana, “Nb-GCLOCK: A non-blocking buffer management based on the generalized CLOCK,” in
ICDE 2010, 2010, pp. 745–756.
[4] W. Wang, “Storage management for large scale systems,” Ph.D. dissertation, Department of Computer Science, University of Saskatchewan,
Canada, 2004. [30] L. Huang and T. cker Chiueh,
[5] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang, “DULO: an effective buffer cache management scheme to exploit both temporal and spatial
locality,” in FAST 2005, pp. 8–8.

http://www.ijircce.com

