
       ISSN (Print)   : 2320 – 9798  
       ISSN (Online): 2320 – 9801 

 
International Journal of Innovative Research in Computer and Communication Engineering  

Vol. 1, Issue 1, March 2013 
 

Copyright to IJIRCCE                                                                       www.ijircce.com                                                                      161 

Efficient Email Spam Prediction using 
Feedback Clustering Technique 
Venkata Sai Sriharsha Sammeta1, K Jairam Naik 2, K Ram Mohan Rao 3 

Computer Science, Vasavi College of Engineering, Osmania University & Intern@Oracle India 1 

Ph.D. in Computer Science, Professor, Vasavi College of Engineering, Osmania University, Hyderabad, India 2 

Professor, Ph.D from JNTUH, Vasavi College of Engineering, Osmania University, India3 

 
ABSTRACT: We address the problem of identifying batches of emails that have been generated according to the same 
template. This problem is motivated by the want to filter spam more effectively by applying collective information 
about entire batches of created messages. The application meets the problem setting of supervised assembling, because 
examples of correct assembling are can be collected. Known decoding procedures for supervised assembling are cubic 
in the number of instances. When conclusions cannot be reconsidered once they have been made – owing to the flow 
from nature of the data – then decoding issue can be resolved in linear time. We devise a serial decoding procedure and 
extract the corresponding increasing problem of supervised clustering. We study the effect of collective attributes of 
email batches on the effectiveness of identifying spam emails. 
 
KEYWORDS: Machine Learning, Deep Learning, Data Clustering, Neural Networks,Natural language Processing, 
SMTP session, Classification. 

I. INTRODUCTION 
 
Senders of spam, phishing, and virus emails prevent mailing multiple similar copies of their messages. Once a 

message is known to be malevolent, all subsequent similar copies of the message could be blocked easily, and without 
any exposure of erroneously blocking regular emails. Collective appearances of jointly generated batches of messages 
could support additional hints for automatic classification, if batches could be identified. Tools for spam, phishing, and 
virus propagation employ copies and stochastic grammars. The copies are instantiated for each message. Table 1 shows 
two illustrative spam messages, created from the same template. 

A natural way to identifying batches in incoming messages is to array groups of similar instances. But unlike for 
preliminary data analysis, a ground truth of correct clustering’s occurs. In order to decide which technique to use, one 
has to acknowledge the features of electronic messaging. 

The total amount of spam in electronic messages is approximated to be approximately 80 %. Currently, 80 % to 
90 %of these messages are created by only a few spam senders, each of them containing a small number of templates at 
a time, but exchanging them quickly. Thus, analysing the total email traffic of a short time window, the largeness of 
incoming messages has been created by a small number of copies while the remaining 20 % cover newsletters, personal, 
and business communications. In array solution, the latter would conclude in a large number of singleton groups while 
newsletters and spam batches assemble in many large and some very large groups. An identical clustering algorithm 
needs to allow for rotating many clusters and an adjustable similarity measure that can be suitable to yield the ground 
truth of correct clustering’s. 

At first blush, correlation assembling meets all these requirements. Finley and Joachims adapt the identical measure 
of correlation clustering by structural holding vector machines. The solution is similar to a poly-cut in a fully connected 
graph spanned by the messages and their pairwise likeness. However, this solution avoids the temporal structure of the 
data. And although training can be accomplished off-line, the correlation assembling procedure has to make a decision 
for each incoming message in real time asto either it is part of a batch. Larger email service holders have to deal with 
an amount of emails in the order of 108 emails each day. Being cubic in the number of situations, this solution leads to 
difficult problems in practice. 
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We devise a serial clustering technique that defeats these drawbacks. Employing the temporal nature of the data, it is 

linear in the number of situations. Sequential clustering can easily be integrated in structural SVMs, allowing for the 
identical measure to be suitable on a labelled training set. 

II. RELATED WORK 
 
Prior work on clustering of stream gushing data mainly targeted on finding single-pass approximations to k-Center 

algorithms. Guha et al. develop a constant-factor approximation to k-Median gathering, whereas Ordonez use an 
accumulative version of k-Means for clustering flows of binary data. 

Prior information about the gathering structure of information set allows for enhancements to gathering algorithms 
such as k-Means. For instance, Wagstaffetalincorporate the background knowledge as must link and cannot-link forces 
into the clustering methods, while Bar-Hillel et al. and Xing et al. learn a metric over the data space that includes the 
prior knowledge. 

Using batch information for spam categorization hasbeen studied for settings where different users receive spam 
emails from the same batch. Gray and Haahras well as Damiani et al. (2004) discuss difficulties regarding the 
distribution of batch information and trust among users, while mostly heuristics are utilized to identify matching emails 
from the samebatch. More sophisticated survey of strong identification of duplicates has been done in other 
areas.Learning adjustinglikeliness measures from data haspreviously been studied by Ristad and Yianilos. 

Correlation clustering on fully related graphs is introduced in. A generality to whimsical graphs is presented in, and 
Emanuel and Fiat show the similarity toa poly-cut problem. Approximation plan of action to theNP-complete decoding 
are presented. Finley and Joachims examined supervised clustering with structural support vector machines. 

Several discriminating algorithms have been studiedthat use joint spaces of input and output variables;these 
containmax-margin Markov models and structural support vector machines. These procedures usekernels to compute 
the inner product in input output space. This way allows to abduction arbitrary dependencies between inputs and 
outputs. Anapplication-specific learning procedure is constructed bydefining appropriate features, and choosing a 
decoding method that easily calculates the argmax, applying the dependency structure of the features. 

III. PROPOSED ALGORITHM 
 

In this section, we abstruse the problem of detectingbatches in an email stream into a well-defined problemsetting. We 
divide the problem into decoding andparameter estimation and extract an appropriate lossfunction for the parameter 
estimation step. 
A mail transfer agent methods a continuous stream ofmessages; for each message, it needs to agree whichaction to take. 
Possible actions are to apply the message from the combined agent and to deliver it to the receiver; to avoidthe message 
within the SMTP session; or to apply the message and file it into the receivers spam folder. We target on the decision 
on whichmessages are part of the identical batch. The policy on a concluding action to take can depend on whether this 
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batchis already blacklisted as being malignant, and possibly on the output of a classifier that uses data in the email as 
well as in the total batch. 
The agent can take only a permanent number of messages into account when making decisions, for apparent memory 
constraints. We typical the problem such that at each time, a window of messages x is visible. The output is an adjacent 
matrix y, where yjk = 1 if xj and xk are features of the same batch, and 0 otherwise. 
Training data contains of n sets of exercising emails x(1),….,x(n) with T(1),…,T(n) features. Each set x(i) performs a 
snapshot of the window of apparentmessages. For each training set we are given the exact partitioning into batches and 
entity emails by averagesof adjacency matrices y(1),…,y(n). 
A set of pair wise feature functions φd: (xj, xk) 7→ r ∈R with d = 1,...,D is available. The characteristic functions 
appliance aspects of the correspondence between xj and xk. Examples of such functions are the TFIDF affinity of the 
message bodies, the refine distance of the subject lines, or the affinity of color histograms of images included in the 
messages. All characteristic functions are stacked into affinity vector Φ(xj, xk). 
The desired solution is a method that produces an adjacency matrix minimizing the number of incorrect tasks of emails 
to batches, where incorrect mentions to the ground truth that is reflected in the training data. The number of incorrect 
tasks is measured by the following loss function ∆: (y,yˆ) 7→ r ∈ R+0. Mis-assigning component xj to a batch corrupts 
a number of matrix elements yjk equal to the size of the batch. Intuitively, mis-assigning a message to a tiny batch is as 
bad as mis-assigning it to a huge batch. Therefore, in order to assess the total number of incorrect tasks, the number of 
bad links for each xj is separated by the size of the batch that xi is accrediting to: 

    
We will now present the model parameters and divide the problem into decoding and parameter estimation. It is natural 
to find affinity value sim w(xj , xk) by linearly combining the pairwise characteristic functions with a weight vector w, 
forging the parameterized analogy measure of Equation 1. 

 
Applying the characteristicfunction to all pairs of emails in a set yields a same matrix. The problem of generating a 
consistent clustering of instances from a characteristic matrix is equivalent to the problem of correlation clustering. 
Given the parameters w, the decoding issue is to generate an adjacency matrix yˆ = argmaxy f(x, y) that increases a 
decision function f, subject to the force that yˆ be a consistent clustering. In normal correlation clustering, the topic is 
the intra cluster similarity: 
: 

 
The parameter learning problem is to get weights w such that, for a new flow of messages, the w parameterized 
decoding method produces clustering’s that decrease risk; i.e., the expected losswhere p(x, y) is the distribution of sets 
of objects and their exactclustering’s. 

 
A. LEARNING TO CLUSTER 

Supervised clustering appealingly fits into the framework of learning support vector machines with structured output 
space. Finley and Joachims (2005) use an iterative algorithm for research the weight vector; it starts with an empty set 
of restraint and adds the most strongly violated constraint in each iteration. We briefly review the typical and decoding 
problem and extract the parameter optimization issue for our loss function. We arrive at a compact optimization issue 
that can be solved using standard tools alternative of an iterative procedure. 

 
In regular correlation clustering, the decision function to be increases by the clustering is the intra cluster 

characteristic. Substituting Equation 1 into Equation 4 displays that the resolution is an internal product of boundaries 
and a vector Ψ(x, y) that jointly present input x and output y (Equation 5). 
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Given parameters w and a set of instances x, the decoding problem is to find the highest-scoring clustering. 

 
Equation 6 requires yˆ to be a consistent clustering: if xj and xk are elements of the same cluster and xk and xl are in 

the same cluster, then xj and xl have to be in the identical cluster as well. Unfortunately, increasing f(x, y) over integer 
tasks of matrix elements yjk is NP-complete. A common way is to approximate it by relaxing the binary edge labels yjk 
to continuous variables zjk∈ [0, 1]. 

 
We mention to this decoding strategy as the LP decoding; it is cubic in the size of the window x. Parameter w is 

chosen as to decrease the regularized empirical counterpart of the risk in Equation 3. 

 
Replacing the right-hand side of restraint 9 with their constantsimilarity and substituting the assigned loss function 

∆N, we can write it as 

 
And z ranges over all adjacency matrices that satisfied the triangle inequality. Combining these constraints into the 
objective function leads to the respective 
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Strong duality holds and the decrease over λ and ν can be combined with the decrease over w. The reintegration into 

Equations 8-10 finally leads to the joined Optimization Problem 1. 
 

 
Optimization Problem 1 can be solved directly using normal QP-solvers. Choose a same approach but arrive at an 

iterative algorithm to learn the weight vector. The iterative algorithm displays only a subset of the constraints and 
therefore achieves a speedup at training time. In our case, the training models are modestly sized whereas, at 
application time, a high-speed stream has to be processed. 

 
B. CLUSTERING OF STREAMING DATA 

In our batch disclosure application, incoming emails are handled sequentially. The decision on the cluster tasks has 
to be made immediately, within an SMTP conference, and cannot be changed thereafter. Because of the high volume of 
the email flow, anydecoding algorithm needed more than linear execution time in the number of emails processed and 
the number of emails in the window would be restrictive. 

 

 
We therefore set the constraint that cluster membership cannot be amended once a decision has been made in the 

decoding method. When the division of all previous emails in the window is fixed, a new mail is analyzed by either 
assigning it to one of the occurring clusters, or creating a new singleton batch. Algorithm 1 details this way; the 
normally empty dividing C becomes a singleton cluster when the first message receives. Every new message then both 
groups to an actual cluster cjby generating its own singleton cluster, . In, constant, the decoding issue of finding the y 
that increases Equation 5 reduces to    

    
The first summand is fixed. Finding the maximum in Equation 11 amounts to managing it to the cluster which is 

most similar to xT or, if no containing cluster has positive total similarity, establishing a new singleton cluster. 
Conditions of the adjacency matrix y(i) of the i-th input, the task is to find entries for the T-th row and column, 
realizing the optimal clustering of xT . We designate the set of matrices that are consistent clustering’s and are equal to 
the i-th example, y(i), in all rows/columns instead for the T-th row/column, by Y(i)T. If we denote the potential new 
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cluster with  ̄c, Y(i)Tis of the size |C ∪ {c }̄| ≤ T(i).Finding the new optimal clustering can be articulate as the 
following maximization problem.. 
 
C. Decoding Strategy 1 Given T(i) instances x1, . . . , xT(i) , identical measure simw : (xj , xk) 7→r ∈ R, and a 

clustering of instances x1, . . . , xT(i)−1; the series decoding problem is defined as 

 
Now, we extract an optimization problem that requires the subsequent clustering to produce the correct output for all 

training information. Optimization constitutes a compact formulation for examining the required optimal weight vector 
by handling message as the most advance message once, in order to exploit the applicable training data as effectively as 
possible. 

    

IV. EXPERIMENTAL RESULTS 
 
In this section we judge the performance and advantage of batch detection on a collection of emails. We analyze our 

learning methods with the repetitive learning procedure for supervised clustering by Finley and Joachims and 
accomplish an error analysis. We judge how the identification of email batches can existent support the classification of 
emails as spam or non-spam. Furthermore, we evaluate the execution time of the presented decoding methods. 
Quadratic programs are resolved with CPLEX. 
 
A. EMAIL BATCH DATA 
Email batch detection is accomplished at a mail transfer agent that processes a dense stream of messages. A standard 
email accumulation such as the Enron corpus or the TREC spam collections are collected from final receivers and 
therefore show different characteristics. A mail transfer agent actions many large batches over a short period of time. 
Existing spam corpora were gathered over a longer period from clients and include fewer and more scattered copies of 
each batch. We therefore generate an email corpus that reflects the features of an email stream, but solutions the 
obvious privacy concerns that would proceed from simply recording an email stream at a mail transfer agent. We do 
record the email flow for a short period of time, but only correct spam messages from this record. We randomly insert 
non-spam messages from the accumulation and batches of newsletters. We avoid the headers except for the sender 
address, MIME part data, and the header size. 
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The final corpus includes 2,000 spam messages, 500 Enron messages, and 500 newsletters (copies of 50. We 

normally group these emails into 136 groups with an average of 17.7 emails, and 598 remaining singleton mails. We 
apply 47 characteristic functions. They contain the TFIDF similarity, equality of sender, equality of the MIME type, 
and differences in letter-bigram-counts. 

 
We design a cross validation method such that no elements of the same newsletter or spam group occur I both the 

training and test set at any time. To this end, we build each test set by using one non-singular group, and filling the test 
model with singletons and emails of other batches to a total size of 100. Groups with more than 50 emails are separated 
over several test sets, to ensure a reasonable combination of emails from the test group and other emails. Overall, there 
are 153 test sets. For single of these test sets, nine training sets x(1), . . . , x(9) are created by sampling randomly from 
the remaining emails, forbidding emails from the test batch in case of split test batches. All stated results are averaged 
over the conclusions from each of the 153 training/test combinations. 

 
B. BATCH IDENTIFICATION 

We analyze the parameter vectors obtained by four strategies. Parameters are approximated by solving Optimization 
Problem 1, solving Optimization Problem 2, and by using the repetitive training algorithm of Finley and Joachims. As 
an additional baseline, we coach a pair wise classifier: each pair of emails within a set contains a training example, with 
label +1 if they apply to the same cluster and −1 otherwise. On these pairs, and the weight vector is directly used as 
parameter of the corresponding measure. The total clustering is then gained by one of the decoding approaches, using 
the corresponding matrix acquired from pair wise learning. 

 
Though three of the four optimization problems mentioned to a specific decoding strategy, we judge each of them 

with every decoder for contrasting. We study three decoders: LP decoding solution of, the subsequent decoder, and the 
greedy accumulate clustering described. Figure 1 shows the average loss per mail of these combinations with standard 
error. For this problem, there are no important differences between either of these training and decoding methods. 
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Figure 2 gives more insight into the features of the compared methods. On the y-axis, the number of different edges 
with respect to the true clustering is described. The signs of the corresponding model induced by the weight vector and 
the pair wise features. The corresponding matrix serves as input to the decoder; the decoder transforms it into a 
constant division. The colored bars show the numbers of wrong edges after clustering. It is possible that the simplest 
learning method, pair wise learning, leads to the less wrong edges before clustering, but the existing similarity matrix is 
furthest away from being a constant partitioning. This corresponds to the intuition that the coaching constraints of pair 
wise learning refer to individual links alternate of the entire partitioning. The iterative algorithm leads to corresponding 
matrices which are somewhat nearer to a consistent clustering. The similarity measures learned by the condensed 
optimization problems lead to a affinity matrix with still more disagreeing edges, while yielding equal error rates after 
decoding. This signifies that the decoding step has to determine fewer inconsistencies, making it stronger to 
approximations. 
 
C. CLASSIFICATION USING BATCH INFORMATION 

We judge how the classification of emails as spam or non-spam benefits from identification of batches. As a baseline, 
we train a linear holds vector machine with the word-counts of the training emails as characteristics. We avoid all email 
header information other than for the subject line in order to eliminate artefacts from the information collection 
procedure.  

We construct a composite filter that sums up the word counts of all emails in a batch, and contains four additional 
features: the size of the batch, a binary characteristic showing whether the batch is larger than one, and a binary feature 
showing whether the sender address of all emails in the batch is similar. This results in all emails within a batch having 
the same character representation. 

 
We investigate how the classification performance is affected by the batch detection. As an upper bound, we 

examine the performance of the collective classifier given exact clustering information, depend on the manual 
clustering. In addition to that, we perform how sensitive the benefit of collective division is with respect to the accuracy 
of the clustering. In the modelling of clustering with noise, each email is collectively divided in a cluster that contains 
increasingly many wrongly clustered emails. 

Figure 3 represents the area under the ROC curve for the classifiers under examination. The performance of the 
collective classifier depend on a exact clustering can be seen on the right hand side of the graph. The difference among 
the collective classification based on an exact clustering and based on the inferred clustering’s is not significant. 
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 The collective dividers perform indistinguishably well; sub sequential and LP decoder accomplish alike. We can see 

that using ideal batch data, the risk of misclassification is decreased by 43.8%, while with non-ideal batch data obtained 
through nearly clustering still 41.4% decreased are accomplished. Even though the baseline appears high already, in 
spam filtering a 40%decrease of the risk is a substantial improvement! 
 
D. CLUSTERING RUNTIME 

An important condition in clustering on streams and especially in identifying spam batches is efficiency. The 
window size has to be adequately large to contain at least one representative of each currently active batch. The time 
necessary to cluster one additional email rely up on the window size is therefore a crucial test for selecting an 
appropriate clustering method. 

Figure 4 demonstrates the observed time required for processing an email by LP-decoding and sequential decoding 
with respect to the window size. While the automation time of the LP approximation grows at least cubically, the time 
for an incremental update for a single email with subsequent decoding grows only linearly. Due to the different time-
scales of the two methods, we use a logarithmic time-scale to plot the curves in a single diagram. 

 

V. CONCLUSION AND FUTURE WORK 
 
We devised a subsequent clustering algorithm and two integrated formulations for learning a similarity measure to 

be used with correlation clustering. First, we extracted a compact optimization problem based on the LP nearly to 
correlation clustering to learn the weights of the similarity measure. , we devised an efficient clustering algorithm with 
automatic complexity linear in the number of emails in the window. From this conclusion we extracted a second 
integrated method for learning the weight vector. 
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