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ABSTRACT: Existing parallel mining algorithms for frequent itemsets lack a mechanism that enables automatic 
parallelization,load balancing, data distribution, and fault tolerance on large clusters. As a solution to this problem, we 
design a parallel frequent itemsets mining algorithm called FiDoop using the MapReduce programming model. To 
achieve compressed storage and avoid building conditional pattern bases, FiDoop incorporates the frequent items 
ultrametric tree, rather than conventional FP trees. In FiDoop, three MapReduce jobs are implemented to complete the 
mining task. In the crucial third MapReduce job, the mappers independently decompose itemsets, the reducers perform 
combination operations by constructing small ultrametric trees, and the actual mining of these trees separately. FiDoop 
on the cluster is sensitive to data distribution and dimensions, because itemsets with different lengths have different 
decomposition and construction costs. To improve FiDoop’s performance, we develop a workload balance metric to 
measure load balance across the cluster’s computing nodes. 
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I.INTRODUCTION 

 
The first step in the discovery of association rules is to find each set of items (called itemset) that have  

co-occurrence rate above the minimum support. An itemset with at least the minimum support is called a frequent 
itemset. The size of an itemset represents the number of items contained in the itemset, and an itemset containing k 
items will be called a k-itemset. Finding all frequent itemsets is a very resource consuming task and has received a 
considerable amount of research effort in recent years. The second step of forming the association rules from the 
frequent itemsets is straightforward as described: For every frequent itemset f, find all non-empty subsets of f. For 
every such subset a, generate a rule of the form a => (f -a) if the ratio of support(f) to support(a) is at least minconf. The 
association ruleX=>Y holds in the database D with confidence c if c% of transactions in D that contain X also 
containY. The rule X=>Y has support s if s% of transactions in D contain X U Y. Mining association rules is to find all 
association rules that have support and confidence greater than or equal to the user-specified minimum support (called 
minsup) and minimum confidence (called minconf) , respectively. 

Frequent itemsets mining (FIM) is a core problem in association rule mining (ARM), sequence mining, and 
the like. Speeding up the process of FIM is critical and indispensable, because FIM consumption accounts for a 
significant portion of mining time due to its high computation and input/output (I/O) intensity. When datasets in 
modern data mining applications become excessively large, sequential FIM algorithms running on a single machine 
suffer from performance deterioration. To address this issue, we investigate how to perform FIM using MapReduce—a 
widely adopted programming model for processing big datasets by exploiting the parallelism among computing nodes 
of a cluster.  

In this survey paper, we will have a look at the algorithms that will be used in this project, in addition to the 
algorithms that were previously used. Here, we have some base papers that use these algorithms. 

 
 

http://www.ijircce.com


   
                        
                          ISSN(Online): 2320-9801 
           ISSN (Print):  2320-9798                                                                                                                         

International Journal of Innovative Research in Computer 
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Website: www.ijircce.com 
Vol. 5, Issue 4, April 2017 

 

Copyright to IJIRCCE                                                     DOI: 10.15680/IJIRCCE.2017. 0504352                                                   8990 

  

II. LITERATURE SURVEY 

A. MR-Apriori: Association Rules Algorithm Based on MapReduce 

Apriori algorithm in a nutshell: 
              First find frequent itemsets (sets of items that have minimum support). A subset of a frequent itemset must 
also be a frequent itemset (Apriori Property). For example, if {A,B} is a frequent itemset then {A} and {B} should be 
frequent itemsets. Use these frequent itemsets to generate association rules. 
MR-Apriori (MR-MapReduce) is an iterative process implemented with the MapReduce programming model. MR-
Apriori algorithm can reduce number of times of scanning the transaction database. Also, reduces amount of data sent 
to reducers. This algorithm is as follows: 
1. Data partitioning and distributed data: Transaction database is divided into subsets. 
2. Formatting data subsets: Format the datasubsets in <key,value> pairs, where key is the transaction ID. Also,set k to 
1. 
3. Execute map task to generate candidate itemsets (frequent itemsets generated based on Apriori property). 
4. Execute combiner function: Combines map function output and gives<itemset,support_count> intermediate pairs. 
Combiner function then uses partition function to divide intermediate pairs generated by combiner function in different 
partitions. 
5. Execute Reduce task to get frequent itemset L1: At reduce function, key itemsets are first sorted, then add support 
count of same candidates to get actual support count for the whole transaction database and finally get the frequent 
itemset L1, by comparing with the minimum support. 
6. Increment k and global frequent itemset Lk-1 is sent to each node. 
7. Repeat steps 3-6. 

 
B. Balanced Parallel FP-Growth with MapReduce 

FP-growth algorithm consists of 2 steps: 
Step-1:Construction of FP-tree: 

Build FP-tree (compact DS) which is built by 2 passes over the dataset. In pass-1 create the F-list and scan data 
and find support for all items. Ensure to discard infrequent items. Sort frequent items in decreasing order based on 
support (use this order for building FP-tree ->since common prefixes can be shared). In pass-2 build a FP-tree.In FP-
tree, nodes correspond to items and each node has a counter. FP-growth reads one transaction at a time and maps it to a 
path. Since fixed order is used, paths can overlap when transactions share items (i.e., when they have  
same prefix ->in this case counters are incremented). 
Step-2: Extracts frequent itemsets directly from the FP-tree: 

Frequent Itemset generation: Frequent itemsets can then be extracted from the FP-tree.FP-growth traverses 
nodes in FP-tree from least frequent item in F-list (bottom-up). While visiting each node from node to root of tree it 
collects some items. These items form conditional pattern base (CPB) for that item.The CPB is like a small database of 
patterns that co-occur with the item. This is repeated until no CPB can be generated. 

In BPFP, we first estimate work load of each mining unit and then fairly divide these units into several groups 
in order to balance load among all groups.With load balance feature, BPFP partitions the whole mining task into even 
more subtasks, hence achieving higher parallelization.Given transaction database and minimum support count, BPFP 
uses 2 rounds of MapReduce to parallelize FP-growth. This algorithm is as follows: 
1. Sharding: Dividing database into successive partitions and storing on different machines. 
2. Parallel counting: Count all the inputs (i.e., <key, value> pair of a transaction) of database. This done in parallel by a 
MapReduce job. The result is the F-list, which is in descending order. 
3. Balanced grouping: Fairly divides all items in F-list into groups based on the load of that group. It is done by 
computing load unit and fairly divide all load units into several groups. This is done by balanced partition. Balanced 
partition means all items in F-list are sorted by load in descending order forming L-list. 
Repeat these 2 steps until all items in L-list are grouped: 
1. Add next non-grouped item in L-list to group with minimum load. 
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2. Increase load of that group by load of new item. 
 

C. An Efficient k-Means Clustering Algorithm:Analysis and Implementation 

A k-nearest neighbor join (kNN join) is a special type of join that combines each object in a dataset  R with k 
objects in another dataset S that are closest to it (scan S once for each object in R). kNN join is an expensive operation, 
since it’s a combination of k nearest neighbors query and the join operation. To improve scalability we consider 
parallelism in a distributed computational environment. MapReduce is a programming framework for processing large 
scale datasets by exploiting the parallelism among a cluster of computing nodes. Mappers cluster objects into groups. 
Reducers perform kNN join on each group of objects separately. To improve efficiency, we have to reduce shuffling 
and computation costs. The existence of replicas leads to a high shuffling cost and also increases the computational cost 
of the join operation within a reducer. Hence, a good mapping function that minimizes the number of replicas is one of 
the most critical factors that affect the performance of the kNN join in MapReduce. In Voronoi-diagram based 
partitioning each object is assigned to partition with its closest pivot and the data space is split into voronoi cells. 

kNN join using MapReduce begins with preprocessing step.  It finds set of pivot objects. These objects are 
used to create voronoi diagram. Pivots are selected using random selection, farthest selection (The first pivot is selected 
at random, and the next pivot isthe point whose smallest distance to existing pivots is the maximum) and K-means 
selection (first clusters then pivots are selected). 

The first MapReduce job takes the selected pivots and datasets R and S as inputs. It consists of a single map 
phase. It finds nearest pivot for each object in RÈS and computes the distance between object and pivot. It also collects 
some metadata about each partition. The result is the partitioning of R based on pivots in the voronoi diagram. In 
second MapReduce job the Mappers find subset of S for each subset of R based on metadata collected in the first 
MapReduce job. Finally, each reducer performs kNN join between a pair of (R, S) mappers. 

 
D. Mining Association Rules in Text Databases Using Multipass with Inverted Hashing and Pruning 

 
 In this paper, we propose a new algorithm named Multipass with Inverted Hashing and Pruning (MIHP) for 
mining association rules between words in text databases. The characteristics of text databases are quite different from 
those of retail transaction databases, and existing mining algorithms cannot handle text databases efficiently because of 
the large number of itemsets (i.e., words) that need to be counted.The new Multipass with Inverted Hashing and 
Pruning (MIHP) Algorithm is a combination of the Multipass-Aprirori (M-Apriori) algorithm and the Inverted Hashing 
and Pruning (IHP) algorithm. Due to M-Apriori, we can reduce the required memory space by partitioning the frequent 
l-itemsets and processing each partition separately. At the same time, by using IHP we can prune some of the candidate 
itemsets generated for each pass efficiently. 
Multipass-Apriori (M-Apriori) Algorithm: 

The Multipass-Apriori (M-Apriori) algorithm for mining association rules is direct descendent of the Apriori 
Algorithm. Apriori is not suitable for mining frequent itemsets in text databases because of the high memory space 
requirement for counting the occurrences of large number of potential frequent itemsets.The Multipass approach 
directly reduces the required memory space by partitioning the frequent 1-itemsets, and processes each partition 
separately. Each partition of items contains a fraction of the set of all items in the database, so that the memory space 
required for counting the occurrences of the sets of items within a partition will be much less than the case of counting 
the occurrences of the sets of all the items in the database.In practice, if the estimated number of candidate itemsets to 
be generated is small after processing a certain number of partitions, then we can merge the remaining partitions into a 
single partition, so that the number of database scannings will be reduced. 
Inverted Hashing and Pruning (IHP) Algorithm: 

Inverted Hashing and Pruning (IHP) is analogous to the Direct Hashing and Pruning (DHP) in the sense that 
both use hash tables to prune some of the candidate itemsets. In IHP, for each item, the transaction identifiers (TID) of 
the transactions that contain the item are hashed to a hash table associated with the item, which is named TID Hash 
Table (THT) of the item. When an item occurs in a transaction, the TID of this transaction is hashed to an entry of the 
THT of the item, and the entry stores the number of transactions whose TIDs are hashed to that entry. Thus, the THT of 
each item can be generated as we count the occurrences of each item during the first pass on the database. After the first 
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pass, we can remove the THTs of the items which are not contained in the set of frequent l-itemsets and the THTs of 
the frequent l-itemsets can be used to prune some of the candidate2-itemsets. In general, after each pass k>=1, we can 
remove the THT of each item that is not a member of any frequent k-itemset, and the remaining THTs can prune some 
of the candidate (k + 1)-itemsets. In general, for a candidate k-itemset, we can estimate its maximum possible support 
count by adding the minimum count of the k items at each entry of their THTs. If the maximum possible support count 
is less than the required minimum support, it is pruned from the candidate set. 
 

E. FiDoop-DP: Data Partitioning in Frequent Itemset Mining on Hadoop Clusters 
 
Sequential FIM algorithms running on a single machine suffer from performance deterioration due to limited 

computational and storage resources which gives rise to a pressing need for the development of parallel FIM 
techniques. The correlation between the data is often ignored which will lead to poor data locality and the data 
shuffling costs and the network overhead will increase. FiDoop-DP is a parallel FIM technique in which a large dataset 
is partitioned across the HaDoop cluster’s data nodes in a way to improve data locality. The goal of FiDoop-DP is to 
enhance the performance of parallel Frequent Itemset Mining on HaDoop Clusters. 

Incorporating the similarity metric and the Locality-Sensitive Hashing technique, FiDoop-DP places highly 
similar transactions into a data partition to improve locality without creating an excessive number of redundant 
transactions. We design an efficient data partitioning scheme, which facilitates an analysis of correlations among 
transactions to reduce network and computing load. Our scheme prevents transactions from being repeatedly 
transmitted across multiple nodes. We implement the above data partitioning scheme by integrating Voronoi-diagram 
with LSH (Locality-Sensitive Hashing). To validate the effectiveness of our approach, we develop the FiDoop-DP 
prototype, where the data partitioning scheme is applied to a Hadoop-based FP Growth algorithm. 

In most existing parallel FP-Growth algorithms, the MapReduce job is the most performance critical and time 
consuming. Previous experiment al results suggest that local FP-Growth cost accounts for more than 50% of the overall 
mining time. The grouping strategy plays the most important role in effecting subsequent data partitioning and local 
FP-Growth performance. Hence, existing data partitioning algorithms that performed prior to the parallel mining 
process are inadequate for solving the problem of redundant tasks. 

 
F. FiDoop: Parallel Mining of Frequent Itemsets Using MapReduce 

 
To achieve compressed storage and avoid building conditional pattern bases (CPB), FiDoop incorporates 

frequent items ultrametric tree (FIUT) rather than conventional FP-trees. In FiDoop, three MapReduce jobs are 
implemented to complete the mining task. In the crucial third MapReduce job, the mappers independently decompose 
itemsets, the reducers perform combination operations by constructing small ultrametric trees, and the actual mining of 
these trees separately, i.e., in parallel. Data partitioning and distribution are critical issues in FiDoop. The main 
idea of FP-growth is projecting database into a compact DS and then using divide and conquer method to extract 
frequent itemsets. The main bottleneck of FP-growth is the recursive traverse of FP-tree and that the construction of 
large number of conditional FP-trees is done residing in main memory. 

The advantages of FIUT are: reduces I/O overhead, offers natural way of partitioning a dataset, compressed 
storage, averting recursive traverse.  Frequent Items Ultrametric Tree (FIUT) is constructed by inserting all itemsets as 
its paths. Each leaf has item_name and support_count (i.e., number of paths ending with that item). Non-leaf node has 
item_name and link. 
 

III.CONCLUSION 
 
  In this paper we have summarized the different techniques used for Frequent Itemset Mining. First, we 
discussed about the MR- Apriori based approach using MapReduce which is used for finding Frequent Itemsets. It uses 
the Apriori property to deduce the Frequent Itemsets. Then we went through an explanation on construction of  FP-tree 
and extracting frequent itemsets using balanced FP- growth algorithm with MapReduce. Here we use conditional 
pattern bases to mine frequent itemsets using FP-trees. Later we looked into K-means clustering algorithm which helps 
to detect the closest neighbours. It uses the Voronoi diagram based data partitioning technique. Inverted hashing and 
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pruning which is one of the main steps in MapReduce is explained. It is best suitable for text data bases due to counting 
of large number of potential frequent itemsets. FiDoop-DP gives us an insight on how partitioning the data efficiently 
helps improve the performance of FIM. It uses the Locality sensitive Hashing technique to place the related 
transactions into the same data partition thus improving the data locality, reducing shuffling cost, avoiding duplicate 
transactions and greatly enhanching the performance of the FIM algorithm. Literature survey on all the above papers, 
has lead us to FiDoop which uses above methods to achieve compressed storage and avoid building conditional pattern 
bases. 
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