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ABSTRACT: Metabolic engineering involves construction and optimization of biosynthetic pathways to maximize 
yields of desired products for various biochemical applications. The fundamental engineering principles in synthetic 
biology include the development of tools and techniques for understanding and modification of the DNA, RNA and 
proteins. Genetic circuits, composed of complex networks of interacting molecular machines, enable living systems to 
sense their dynamic environments, perform computation on the inputs and formulate appropriate outputs. Novel genetic 
circuits with useful applications have been constructed through rational design and forward engineering by the 
synthetic biologists. Diverse paradigms have emerged for designing, modeling, constructing and characterizing of 
artificial genetic systems. The utilization of databases and computational tools may predict the designs to achieve the 
desired product in metabolic engineering. Moreover, bottom-up engineering of synthetic microbial consortia with novel 
functions is also becoming an attractive alternative to the engineering of single-species systems. This paper focuses on 
computational tools and models used in metabolic engineering and synthetic biology for designing of genomes, 
microbial strains and/or cellular functions. 
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1. INTRODUCTION 
 

Biological system of living cells is composed of large number of molecular components including nucleic acids (DNA 
and RNA), proteins, carbohydrates and lipids. Computer scientists along with molecular biologists are exploring the 
potential for computation of DNA molecule and biological databases from different available genomes [1-3]. Metabolic 
engineering utilizes biological information to genetically modify the cellular function for production of a targeted 
chemical or protein product. Successful metabolic engineering results are based on directed designs built upon 
biological databases or combinatorial screening that uses high-throughput experimental techniques. Computational 
tools have been developed to utilize biological data in the analysis and design of microbial strains for metabolic 
engineering [4]. These tools began with genome-scale metabolic models that aid in the analysis and prediction of whole 
cell function and have expanded to include tools for predicting the function of specific DNA sequences. 

Integrated and extensible biological design cycles enable engineers/researchers to develop high-level conceptual 
designs, translate these designs into potential circuit implementations using libraries of well-characterized 
model/devices, construct the designs in an automated fashion and modulate the resulting constructs for proper operation 
[5]. Continuous feedback between multiple stages in the design cycle is needed to enhance their performance and 
integration. Usually, the ability to model the stochastic and dynamic behavior of synthetic designs is limited to small-
scale circuits. Ellis et al. [6] demonstrated that detailed models coupled with diversified promoter libraries can guide 
predictive synthetic circuit design for straightforward feed-forward loops. However, using current techniques, 
researchers would need significant experimental data and computational resources to scale these models to account for 
all chassis-circuit interactions and larger circuit designs to achieve accuracy and utility.  

Microbial production of biofuels and high-value chemicals has been a focus of recent interest in metabolic 
engineering for environmental reasons with production methods ranging from converting biomass [7] to harnessing 
photosynthesis [8]. Strategies for pathway expression and optimization include tuning of transcription rates via 
promoter libraries [9], tuning of translation rates via ribosome-binding sites [10], physical scaffolds for enzymes [11] 
and directed evolution [12]. In this article, a brief overview is presented on the development and progression of 
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computational tools that can be applied in metabolic engineering. Specific developments in synthetic biology associated 
with transcriptional and translational control will also be discussed within the context of genome-scale modeling and 
metabolic engineering. This review will provide updated recent advances in synthetic biology by focusing on selected 
steps in the biological design cycles and their application in metabolic engineering [13,14]. 

 
II. ENGINEERING OF GENOMES AND CONSTRUCTION OF METABOLIC MODELS 

 
Synthetic biology includes the creation of artificial life within the laboratory [2] and a broader challenge in synthetic 
biology is to engineer existing genomes for bio-manufacturing or to decipher the principles that govern the operation of 
biological systems [5,14]. The sequencing of whole genome and genomics technologies are used to develop methods 
for utilizing genomic information to understand and predict phenotypic function. The rapid improvements in DNA 
synthesis and enhanced assembly techniques enabled the construction of entire genomes. Recently, synthesis 
capabilities have progressed from a Mycoplasma genome of 582,970 base pairs [1] to a 1.08-mega-base-pair 
Mycoplasma genome transplanted into a recipient cell lacking a genome [15]. Dymond et al. [16] reported the 
remarkable synthesis of the right arm of chromosome IX in yeast and a portion of chromosome VI. Although the 
sequences are relatively short (90,000 and 30,000 base pairs, respectively), they are the largest pieces of eukaryotic 
DNA synthesized. These genomes were integrated into yeast cells with minimal phenotypic variation in growth and 
gene expression. This work provides a valuable method of studying the yeast genome and adapting yeast to specific 
applications such as biosynthesis.  

The constraint-based modeling approach was implemented to generate genome-scale metabolic models of some 
of the first organisms with genome sequences [17,18]. The initial genome-scale models were constructed based upon 
genomic data (DNA sequence information) and biochemical data (reaction stoichiometry) in conjunction with linear 
programming to apply mass balancing principles to a whole-cell system. These models range from understanding the 
underlying structure of networks by using model-building approaches [19] and progressively more cellular details 
including transcriptional regulation [20,21] and signaling pathways [22]. All of these models have contributed to 
improve the predictive capability and accuracy of genome-scale metabolic models and can be used to study a variety of 
aspects of cellular systems. Some of the existing computational tools and softwares applied in metabolic engineering is 
provided in Table 1.  

 
Table 1. Major developments in synthetic biology affecting metabolic engineering applications 

Year Developments Year Developments 
1995 H. influenzae genome sequenced 2010 PWM model of promoters 

1997 E. coli genome sequenced 2010 Flux balance analysis (FBA) 
2000 Genome scale models of H. 

influenzae and E. coli developed 
2010 Co-culture modeling 

2003 Registry of standard biological parts 2011 Metabolic route search and design 
(MRSD ) web server 

2003 OptKnock developed 2012 MAGE; Genome scale promoter 
engineering 

2005 OptKnock designed for lactic acid 
production in E. coli 

2013 Dynamic strain design 

2009 Expression matrix 2014 KEGG and BRENDA; Public access 
databases 

2009 Ribosome binding site calculator 2014 Synthetic eukaryotic genome 
 

III. EXPRESSION CONTROL OF GENES IN GENETIC ENGINEERING 
 

The technological advances in DNA synthesis and high-fidelity assembly of DNA fragments led to the developments 
and improvements of molecular biology and genetic engineering tools [23,24]. For metabolic engineering applications 
and the investigation of all biological functions, a finer control over the expression of genes in a given pathway could 
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be designed and implemented [21]. Designed expression control for individual genes typically occurs either at the 
transcription or translation levels.  
3.1. Transcription 
The first level of functional control for specific genes occurs during transcription. The transcriptional process involves 
a binding of RNA polymerase on a DNA sequence (promoter) to initiate biosynthesis of mRNA (Fig. 1). The analysis 
of naturally occurring promoter sequences showed the occurrence of conserved sequence motifs that physically bind to 
the sigma subunit of the RNA polymerase. Sequence variation in the promoter was found to affect transcriptional 
strength. In the early stages of the development of synthetic biology, transcriptional DNA parts were created and 
catalogued allowing the use of genetic variants for transcriptional control [25]. Base-by-base changes in promoter (or 
UP element) sequences could be accurately synthesized and rapidly tested in synthetic DNA constructs.  

Controlled sequence-to-function relationships could then be extrapolated using mathematical correlation 
methods such as a position weight matrix (PWM). PWMs were initially applied to biological systems as a quantitative 
means of investigating conserved DNA sequences [26]. Recently, PWMs have been used to quantitatively describe the 
sequence-to-function relationship for promoters in E. coli [27]. By dividing promoter sequences into 6 motifs (− 35, 
spacer, − 10, disc start, initial transcribed region), 60 different promoter sequences were characterized for promoter 
strength and used to evaluate the influence of specific genetic changes on function. This approach was also applied to a 
class of transcriptional modulating sequences called UP elements [28], which occur upstream of core promoter 
sequences. In these cases, PWMs were used to mathematically model the relationship between sequence and function. 
Recently, synthetic promoters have been designed to produce a desired level of transcriptional strength with the recent 
modeling developments. 
3.2. Translation 
During translation, mRNA is translated into proteins. Translation initiates when a ribosome interacts with a ribosome 
binding site (RBS) and facilitates the subsequent tRNA binding to mRNA codons to produce polypeptides by the 
addition of amino acids. Translation involves three steps: Initiation, elongation and termination. Of these three steps, 
translation initiation is the rate-limiting step and different rates of translation initiation are found due to variation in the 
DNA sequence of the RBS within each cell. Recently, a computational approach has been developed to predict 
translation initiation rates for all start codons in a given DNA sequence based upon a thermodynamic calculation of 
Gibbs free energy [10]. This calculation specifically considers the interaction of the 30S ribosomal subunit with a 
specific mRNA sequence. This “Ribosome Binding Site Calculator” can be used not only to predict translation 
initiation rates for existing sequences, but also to design de novo RBS sequences for synthetically controlling translated 
protein levels. Synthetic biology has now developed a complement of experimental and computational tools to design 
and control individual gene expression levels at both the transcriptional and translational levels [29]. These tools enable 
a finer level of design control for biological systems and can be implemented for metabolic engineering applications.  

 
 

Figure 1. Promoter sequences on the DNA are recognized by the RNA polymerase and sense strand of double stranded 
DNA acts as template strand for synthesis of mRNA (transcription). The message in mRNA is translated in synthesis of 
different aminoacids by the ribosomes in conjuction with tRNA. Aminoacids get polymerized to make different 
proteins in living cells.  
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IV. COMPUTATIONAL TOOLS AND SOFTWARES USED IN METABOLIC ENGINEERING MODELS 
 

Using the natural ability of genome-scale metabolic models to simulate the behaviour of cellular metabolism, cellular 
designs for maximizing chemical production can be predicted. Metabolic engineering goals of identifying and 
modifying pathway fluxes to optimize the production of a desired chemical product align well with the pathway-level 
predictions that are generated from a genome-scale model. A genome-scale model of Escherichia coli was 
demonstrated to predict strain designs for the over-production of lactic acid [30], which set the stage for genome-scale 
models as powerful computational tools for strain design (Table 2). The first iterations of combining computer-aided 
strain design with experimental implementation relied on strain designs that incorporated gene deletions. This approach 
was computationally achievable through the removal of pathways associated with genes and could be achieved 
experimentally with established methods for targeted gene deletions using homologous recombination [31].  

By utilizing transcriptomic data of the experimental strain, algorithmic analysis predicted areas of metabolism 
with the largest difference between the theoretical and experimental function [32]. This analysis predicted specific 
genes to be targeted for synthetic regulation of gene increased or decreased expression. To improve the accuracy of 
these models to predict cellular phenotypes, new methodologies and analyses continue to be developed. One major 
consideration for genome-scale metabolic models is that the mathematical representation for a biological system is 
underdetermined and thus the same cellular phenotype can be reproduced from different underlying flux states/pathway 
usage. Therefore, knowledge of the starting in vivo flux state is important for pathway-specific metabolic engineering 
design. The initial formulation approach involving a combination of high-throughput experimental data and 
computational algorithms used transcriptomic or proteomic data with a human metabolic model to identify tissue-
specific metabolic differences [33]. In this approach, the experimental data was translated to a binary present/absent 
scoring for each individual transcript/protein. The scored experimental data was then algorithmically integrated with 
the metabolic model framework using mixed integer linear programming (MILP) to calculate a flux state that is in 
concurrence with the experimental data.  

The formulation of the Expression matrix or E matrix was major conceptual advances in the constraint-based 
modeling methodology in E. coli [34]. The stoichiometric matrix provided the basis for all simulations utilizing flux 
balance analysis (FBA). The E matrix represents a major advancement in prediction as it explicitly accounts for all 
mechanisms required for transcription, translation and modification of each gene product. Based upon the 
stoichiometric matrix, dynamic flux balance analysis (DFBA) was initially developed [35] considering two different 
approaches to explicitly integrate kinetics into FBA simulations. The concept of DFBA has been expanded to include 
Michaelis–Menten kinetics for processes where reasonable rate parameters could be found and used as a basis for 
modeling microbial consortia.  

 
Table 2. Computational tools softwares and databases used in synthetic biology 

 
Tools Description Softwares Description 

MILP Refined flux state predictions 
based upon high-throughput 
experimental data 

BioSPICE To access computational tools 

E matrix Prediction of gene and protein 
expression levels 

ORBIT, 
PRODART 

For biomolecular designing 

DFBA Dynamic flux balance analysis Geneetdes, 
RoVerGeNe 

For automated circuit design 

OptCom Multi-level optimization for 
modeling microbial consortia 

Cell 
Designer 

For diagrammatic editing of biological 
networks 

OptKnock Bi-level optimization for strain 
design using gene deletions 

Gepasi For modeling chemical and 
biochemical reaction networks 

PWM Prediction of DNA sequence 
variation on promoter strength 

Databases 

RBS 
calculator 

Prediction of protein translation 
initiation rates 

Pathway 
tools 

For creating model organism 
databases 

CellWare For deterministic and stochastic BRENDA Contains information about properties 
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cellular events and function of enzymes 
Dynetica To study kinetic model of dynamic 

network 
KEGG Contains information about gene 

function 
Virtual 
Cell 

For modeling and testing 
biological networks 

BioSilico Integrated web-based system for 
studying metabolic process and 
pathways 

BioJake Visualization tools for 
manipulating metabolic pathways 

MetaCyc Contains information about metabolic 
pathway of model organism 

COPASI For simulation of biochemical 
events 

BioModels Contains published quantitative 
models 

 
A multi-level optimization computational framework known as OptCom was developed as a general and 

scalable means of studying microbial communities and the interactions within those communities [36]. The OptCom 
framework considers the community by splitting optimization between individual organism fitness considerations and 
the overall community fitness as a secondary optimization. To facilitate the design process, a growing number of 
algorithms have been developed that expand the predictive capabilities of genome-scale models to simulate different 
strain design parameters. One of the first strain design algorithms to be developed for use with genome-scale metabolic 
models was OptKnock [37] that formulated a bi-level optimization where gene deletions were considered to increase 
the production of a desired chemical while maintaining cellular growth. Underlying the algorithm development was the 
premise that secretion of a target chemical could be stoichiometrically coupled to growth such that the faster a cell grew 
the faster the chemical would be produced. 

The software bridges the gap between the kind of instructions biological designers would like to use for 
designing a synthetically biological compound. Public access databases such as KEGG [38], MetaCyc [39] and RHEA 
[40] were found useful for the designing of metabolic pathways. A database containing molecular and biochemical data 
of enzymes, BRENDA can be useful to select the core pathway capable to produce the metabolite of interest [41]. Web 
servers, such as From-Metabolite-To-Metabolite (FMM) [42] and Metabolic Route Search and Design (MRSD) [43] 
can also be used for designing synthetic and unique metabolic pathways in cell-free systems. To calculate the relative 
contribution of each enzymatic step in the pathway when optimization of particular objective function is required, Flux 
Balance Analysis (FBA) is commonly used [44].  

 
V. DNA LOGIC GATES AND DIGITAL SYNTHETIC GENE CIRCUITS 

 
Logic gates are a vital part of computer that carries out the commanded functions. These gates convert binary code 
moving through the computer into a series of signals that the computer uses to perform operations. In DNA computers, 
these DNA logic gates rely on DNA code, instead of using electrical signals to perform logical operations [45]. These 
gates are actually tiny DNA processing centers that detect specific fragments of the genetic blueprint as input and then 
splice together the fragments to form a single output. For example, a genetic gate called the ‘And gate’ links two DNA 
inputs by chemically binding them so they are locked in an end-to-end structure. Ogihara and Ray [46] suggested that 
these logic gates might be combined with DNA microchips to create a breakthrough in DNA computation.  

Recently, there have been a wide variety of synthetic digital logic circuits implemented at the DNA, RNA and 
the protein level in both prokaryotic and eukaryotic hosts. Techniques often employed to tune transfer functions to 
exhibit digital behaviour, which often involve exploiting positive cooperativity and positive feedback loops [47,48]. 
One of the first synthetic gene circuits built was a toggle switch in E. coli that employed two mutually repressing genes 
to inhibit the expression of one other, resulting in a bi-stable memory circuit [49]. The state attained by the toggle 
switch system can be switched by adding small inducer molecules that regulate the activity of the genes involved and 
several variations of the bi-stable circuit have been built [50, 51].  

Digital circuits capable of complex computation have been built by combining simple memory switches [52]. 
Using the unidirectional recombinases BxbI and phiC31, Siuti el al. [53] built all of the 16 possible two-input Boolean 
logic gates. Using a similar approach, Bonnet et al. [54] built logic gates implementing the digital functions AND, 
NAND and others. A large number of logic gates have been created at the transcriptional level by employing synthetic 
transcription factors that are built by fusing transcriptional effectors with DNA-binding domains. Recently, CRISPR-
Cas-based digital logic gates that have a high potential for scalability have been proposed [55]. RNA-based logic can be 
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enabled by synthetic ribozymes and ribo-switches that trigger catalytic RNA cleavage in a programmable fashion [56]. 
Approaches have been developed to build synthetic switch circuits at the protein level which operate at faster time 
scales compared with their transcriptional and RNA-based counterparts [57,58]. Larger, multi-input logic gates, such as 
a 4-input AND gate, have been built by inter-connecting smaller, two- and three-input AND gates within individual 
cells [59].  

 
VI. APPLICATIONS OF METABOLIC ENGINEERING IN PRODUCT IMPROVEMENT 

 
Metabolic engineering has focused on improving product titer, yield and productivity through the tuning of metabolic 
flux or the introduction of heterologous genes. Synthetic biologists interested in engineering the microbiome to 
inducibly produce therapeutic small molecules or degrade toxic metabolites depends heavily on pathway optimization 
and the suite of tools metabolic engineers have developed for performing a particular function. Incorporation of 
transcriptional dynamics has enabled finer tuning of flux profiles by suggesting optimal times for activation or 
repression of a given metabolic pathway over the time course of a batch culture. This “ON–OFF” approach to optimize 
production may be important when gene knockouts to increase yield cause notable growth impairment, decreasing 
productivity. Anesiadis et al. [60] explored this approach for ethanol production in E. coli by utilizing a quorum 
sensing (QS) module for density-dependent repression (via a toggle switch) of phosphotransacetylase (pta), which leads 
to inactivation of a competing acetate-production pathway. Their synthetic circuit increased productivity but decreased 
yield and differed in behavior from predictive models that did not account for the timescale of repression and protein 
degradation [61].  

Synthetic circuits have also been applied to mitigate deleterious host effects due to the toxicity of intermediates. 
Zhang et al. [62] engineered a control system comprising an engineered fatty acid/acyl-CoA sensor to regulate the 
production of fatty acid ethyl ester, a biofuel. Fatty acid ethyl ester is synthesized by the enzyme wax-ester synthase 
using substrates ethanol and fatty acyl-CoA. Both ethanol production and synthesis of wax-ester synthase enzyme are 
inhibited by fatty acid/acyl-CoA sensor in the absence of fatty acid. By reducing imbalances in the metabolic pathway, 
the yield of their strain was enhanced three times. In situations where well characterized sensors are not available, a 
systems biology approach can identify promoters responsive to toxic intermediate buildup that can then be strategically 
employed to reduce host burden [63].  

Genome engineers have expanded directed evolution approaches to multiple sites within the genome via the 
development of technologies such as multiplex automated genome engineering (MAGE), which relies on incorporation 
of multiple single-strand oligonucleotides introduced via electroporation into daughter cell genomes [64-66]. MAGE, 
coupled with co-selection, can reach incorporation efficiencies of greater than 70% and has been applied to increase, by 
four to fivefold, the production of lycopene as well as aromatic amino acid derivatives [12,65]. Fluorescent read-outs 
can easily be sorted in a high-throughput manner via fluorescence-activated cell sorting in circuits comprising 
biosensors. This mutagenesis combined with the fluorescence-activated cell sorting approach was used to select for 
higher productivity of amino acid synthesis in the industrial microbe Corynebacterium glutamicum via circuits 
incorporating endogenous amino acid-mediated regulatory devices for biosensing purposes [67].  

Chen et al. [68] recently demonstrated the construction of a consortium of two strains of E. coli capable of 
undergoing genetic oscillations only when mutually present via the coupling of two QS systems. The development of 
synthetic communities may have implications for metabolic engineering; for instance, complex metabolites may be 
more amenable for multi-stage production using communities of engineered strains to offset the per-cell metabolic 
load. Zhang et al. [69] investigated this possibility in B. subtilis by constructing a circuit composed of the heterologous 
Auto-Inducing-Peptide QS system which allows for sender–receiver communication but without affecting other aspects 
of the receiver's physiology. Their results suggested that in comparison to the synthetic variant, wild-type strains 
demonstrated synergistic coupling of extracellular matrix production and QS which may allow receiving cells to be 
more responsive to global cell density.  

The engineering of the gut microbiome as an ecosystem of microbial species holds high therapeutic potential. 
Microbiome has been found to affect inflammatory bowel diseases, obesity, asthma, diabetes, neurological disorders, 
behavior, and the metabolism of [70–74]. Engineered strains have been constructed for usage as sensors to detect small 
molecule environmental stimuli in the mammalian gut [75]. Tools are being developed for engineering species of gut 
bacteria already well suited for colonizing the gut; these include members of the well-represented Bacteroidetes and 
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Firmicutes [76]. Synthetic biologists have developed a toolkit amenable for engineering of the commensal Bacteroides 
thetaiotamicron comprising characterized promoters, RBS, inducible systems and the CRISPRi platform [77].  

Synthetic biology may also enable the discovery of novel biomaterials and the cell-based synthesis of useful 
biomaterials by manipulating genetically the sequence and structure of biomaterials. Furthermore, the diversity of 
biological processes is a large source of new biomaterials with properties that can outperform synthetic materials. For 
example, bacterial biofilms have greater resistance to wetting by water as compared with Teflon [78]. Widmaier et al. 
[79] engineered the Salmonella type III secretion system along with codon-optimized versions of silk proteins to create 
a microbial silk-production system.  

Metabolic engineering has the potential to engineer novel diagnostic and therapeutic strategies for relatively 
intractable medical conditions such as cancer and infectious diseases. A critical shortcoming in cancer treatments has 
been their inability to distinguish between cancerous and normal cells, but one reliable signature of tumor growth is 
hypoxia. Anderson et al. [80] engineered Escherichia coli to invade mammalian cells selectively in hypoxic 
environments. Recently, Wright et al. [81] employed similar principles to link enzymatic activity to a cancer marker of 
hypoxia. HIF-1a is a hypoxia-inducible factor selectively found in cancer cells. The activity of a segment from p300, a 
binding partner of HIF-1a, was coupled to the activity of cytosine deaminase, an enzyme that converts the relatively 
benign prodrug 5-fluorocytosine to the chemotherapeutic 5-fluorouracil. This enabled selective activity of the drug 
within cancer cells, which could result in significant improvement in the side effects typical of chemotherapy. 

The rise of antibiotic resistance and properties such as biofilm formation and persistence has made microbial 
infections increasingly difficult to treat. The rapid development of antibiotic resistance in pathogens often necessitates 
treatment with potent antibiotics, which may generate undesired and significant perturbations in the human microbiome 
by non-specifically killing of non-pathogenic bacteria. Selective targeting of pathogens may avoid this side effect. 
Synthetic biology also enables the design of new treatment methods to target bacterial biofilms [82], potentiate current 
antibiotics [83] and engineer new treatment vehicles. Saeidi et al. [84] engineered E. coli to sense Pseudomonas 
aeruginosa, a bacterium causing infections in the lung, urinary tract, gastrointestinal tract and skin. Quorum sensing 
was linked to expression of genes for pyocin (a bacteriocin) and a lysis protein E7. When grown in the presence of P. 
aeruginosa, the engineered E. coli accumulated intracellular pyocin and E7. The sufficient levels of E7 protein lysed 
the cell and release of pyocin killed the pathogen, and inhibited formation of biofilm.  

 
VII. CONCLUSIONS 

 
In metabolic engineering, major components of metabolism could be completely redesigned for more efficient 
utilization of resource pools to minimize material drains. It often incorporates the most recent biological database and 
tools at all levels of biological organization and function within a cell. Using genome-scale models and optimization of 
algorithms, metabolic network analysis and designs can be achieved [85]. Designed tools coupled with rapid DNA 
synthesis and assembly technologies have accelerated the prototyping, tuning and deployment of synthetic biological 
systems for various applications [86]. Depending upon the specific strain design, experimental implementation can 
involve the combinations of gene deletions, gene additions, gene knockdown or gene over-expression. Moreover, 
synthetic DNA construct could be transferred in a microbial strain/living cell and these designed DNA sequences could 
provide desired levels of transcription and translation to achieve enhanced protein production [21,29]. Synthetic 
feedback loops or embedded biosensors can also be used as built-in control mechanisms for monitoring or triggering 
cellular processes. Novel genetic circuits with useful applications have been constructed through rational design and 
forward engineering by the synthetic biologists and efficient strategies have been described for rapidly identifying and 
correcting causes of failure and fine-tuning circuit characteristics [87]. In future, predictive computational models need 
to be developed that could be validated by experimentation and applicable across many host organisms.  
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