

(A High Impact Factor, Monthly, Peer Reviewed Journal) Website: <u>www.ijircce.com</u> Vol. 6, Issue 1, January 2018

Power Price Forecasting In the Smart Grid Using Differential Evolution Based SVM Classifier

Ramya Devi. C¹, Amudha. L²

P.G. Student, Department of Computer Science and Engineering, K.Ramakrishnan College of Engineering,

Samayapuram, Trichy, Tamilnadu, India¹

Assistant Professor, Department of Computer Science and Engineering, K.Ramakrishnan College of Engineering,

Samayapuram, Trichy, Tamilnadu, India²

ABSTRACT: Power price forecasting is a significant part of smart grid because it makes smart grid cost efficient. The existing methods for price forecasting may be difficult to handle with huge price data in the grid since the redundancy from feature selection cannot be averted. To solve such a problem, a novel electricity price forecasting model is Hybrid feature Selection, Feature Extraction and Classification (HSEC) are integrated into a single framework design. In this novel model, first, a Grey Correlation Analysis (GCA) based Hybrid Feature Selector (HFS), combining Relief-F algorithm and Random Forest (RF) is designed to calculate the feature importance and control the feature selection. For feature extraction, Kernel Principle Component analysis is used to further reduce the redundancy among the selected features. Finally, design a differential evolution (DE) based Support Vector Machine (SVM) classifier for to forecast the price accurately.

KEYWORDS: Price forecasting; Feature Selection; Classification; Smart grid

I. INTRODUCTION

One of the main goals of smart grid is to reduce power peak load and to balance the gap between power supply and demand [1]. Customers are able to partake in the operations of smart grid, where the energy cost can be reduced by energy preservation and load shifting. In this case, dynamic pricing is a key indicator of users' switching load [1].Generally, accurate point price forecasting is expected because of the requirement of economy and industry [2].As for customers, they are actually eager to know whether the electricity price exceeds the specific customer-defined thresholds, which they used to decide to turn the load on or off. Under this circumstance, customers require the electricity price classification. Hence, some specific thresholds based on point price forecasting algorithms are used to classify the electricity price. Function approximation techniques are the fundamental of point price forecasting algorithms, in which the basic process of price formation is imitated by a price model [3]. Moreover, price classification requires lower accuracy. Thus, electricity price classification becomes a key priority in the price forecasting.

II. RELATED WORK

In [2] authors describe a smart grid is characterized by the bi-directional connection of electricity and information flows to create an automated, widely distributed delivery network. In [3] authors many technologies to be adopted by smart grid have already been used in other industrial applications, such as sensor networks in manufacturing and wireless networks in telecommunications, and are being adapted for use in new intelligent and interconnected paradigm. In [4] authors a forecasting methodology for prediction of both normal prices and price spikes. In the day-ahead energy market is proposed. In [5] authors the proposed approach uses a wavelet transform (WT) combined with

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com

Vol. 6, Issue 1, January 2018

ARIMA, a neural network (NN), a compound classifier and a k-nearest neighbor model (k-NN) to separately implement normal price and price spikes forecasting processes. In [6] authors WT deals with non-stationary by decomposing the price series into less volatile components. The ARIMA model captures cyclicality of the series clearly exhibiting hourly and weekly patterns.

III. PROPOSED ALGORITHM

To enhance the accuracy of the proposed framework, first develop a parallelized hybrid feature selector (HFS), a Kernel Principal component analysis (KPCA) and a Differential Evolution based Support vector Machine (SVM). HFS based on Grey Correlation Analysis combining Random Forest (RF) and Relief-F algorithm. These two algorithms are used to calculate the feature importance and control the feature selection. Then KPCA is applied to perform the non linear dimension reduction. KPCA will be performed in the selected features for further removal of redundant features.Finally, the selected features is sent to build SVM. The support vector is a classifier that tries to find a hyper plane which can divide data into the correct classes .Since SVM is controlled by several super parameters(cost penalty, insensitive loss function parameter and kernel parameter) so that DE algorithm is used to tune the super parameters. SVM is an underpinned framework that can predict the price efficiently.

Power Price Forecasting has modules are

- Hybrid Feature Selection
- Hybrid Feature Extraction
- Clustering
- Classification
- Predicted Data

A. Hybrid Feature Selection

Feature selection is performed based on GCA algorithm. It is kind of preprocessing of a dataset value. That will remove noisy inconsistent data. Thus GCA can provide a quantitative measure of the closeness between the electricity prices.

B. Hybrid Feature Extraction

The features selected by HFS can be considered that have no irrelevant features, but also have redundant features. Kernel Principle Component Analysis (KPCA) for feature extraction ,which reduce the redundancy among features.

C. Clustering

Clustering is the grouping of a particular set of objects based on their characteristics, aggregating them according to their similarities.

D. Classification

Support Vector Machine (SVM) underpinned framework that can predict the price efficiently.SVM is a classifier which can divide features into the correct classes. The four main procedures run repeatedly until the optimal parameters are obtained.

1. Initialization

This stage forms the first population randomly. We make the first population obey the uniform distribution.

2. Mutation

The target of mutation operation is to generate new individuals.

3. Crossing

Crossing is to increase the variety of generation and mix the mutant individuals via the origin individuals in every dimension with a certain probability.

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: <u>www.ijircce.com</u>

Vol. 6, Issue 1, January 2018

4. Selection

The selection operation selects the individuals that make SVM more accurate.

E. Predicted Data

In this module, can get our predicted data by performing above methodologies from huge amount of dataset.

IV. PSEUDOCODE

Input: WR[Tk] 0:0;WF [Tk] 0:0;A[];R[n] Output: WR[Tk];WF [Tk] 1 begin 2 initialization: set all weight WR[Tk] <- WF[Tk] <- 0:0, read data from A[] 3 Evaluator &: 4 begin 5 for k from 1 to m do 6 for i from 1 to n do 7 calculate errOBB1i using corresponding OBB data set of decision tree[i] 8 randomly add noise to all OBB data on feature Tk 9 calculate errOBB2i using corresponding OBB data set of decision tree[i] 10 end calculate the importance of feature WR[Tk] <- (errOBB2i□errOBB1i)/n 11 12 end 13 end 14 Evaluator : 15 begin 16 for k from 1 to m do 17 select an item in class (Ci) by random 18 find k nearest hits item Hj(Ci) 19 for each class (Cj) != class(Ci) 20 find k nearest miss item Mj(Cj) 21 end 22 for i from 1 to m do 23 update WF [Ti] 24 end 25 end 26 Selector: 27 begin 28 normalize WR,WF 29 perform feature selection 30 end **31 end**

V. SYSTEM ARCHITECTURE

The system framework combined with three modules. The three modules are feature selection, feature extraction and classification. The goal is to do efficient and accurate forecasting of electricity price.

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: <u>www.ijircce.com</u>

Vol. 6, Issue 1, January 2018

FIG 1.SYSTEM ARCHITECTURE

VI. RESULT AND OUTCOME

The result describes forecasting the all the price and predict the final price.FIG 2 describes the dataset selection. The electricity data set can be selected and it is stored in to the database.

FIG 2.DATASET SELECTION

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com

Vol. 6, Issue 1, January 2018

FIG 3 describes the hybrid feature selection. The features are to be selected from the dataset. Grey correlation analysis (GCA) is used to select the features and remove the redundancy among the features.

		L	View	e	J			GC	A Fea	Eure s	select	ion	View			
\$*11	trand.	price	(unit):	Chun .	Derre.	10		pro	brand [price	tiou	0.0	Sers.	10	10	
Table	unair	000	989	900	88	00	16	table	chuist	000	999	900	88	00		
1000	989	000	56	7	80	034	125	ciloti	988	000	56	7	89	034	N	
moisie	900	000	000	767	34	064		79010549	800	000	000	767	34	054		
Sela.	sony	200	15	75	66F	0/1		taria	alonyi .	200.	15	75	65F	01		
teria	840/1V	250	17	80	70F	011		Seller	augenvi -	250	17	80	TOF	01		
bein	100	180	20	50	SOF	01	2	telle	HD CD	180	29	50	SOF	01	1	
tele	800	300	12	60	55F	011		toliei	HG Ct	300.	82	60	56F	01	11	
tele	84.	350	25	85	86F	01		100 m	58.	350	25	85	85F	01		
Seim	58	300	21	75	63F	Orti .		Server	58	300	21	75	63F	01		
teis	alony	200	15	75	60F	01		telle	accentyr .	200	15	75	65F	01		
tan-	webba.	5000	15	215	44F	002		tpirt.	Mis/mak	5000	15	75	44F	02		
Tarv	BON-	8000	18	.75	35F	007		tam	hani	8008	18	75	35F	02		
fan	Bay-	.7000	10	35	9.25	007		tam	fean:	7000	10	75	120	02		
fan	baga)	6000	18	35	33F	007		tan.	0.000	6000	10	75	33F	.02		
fam	bajaj	4000	18	75	25F	0.02		fam	0.0(4)	4000	18	75	25F	02		
fildge:	1.0	200	15	75	55F	001		tridge	LG	200	15	75	00F	03		
fridge.	pea	250	87	88	70F	001		tridge	gee	250	27	88	TOF	03		
thidge.	100	5000	13	50	SOF	03	100	#1idge	HG CD	5000	13	50	SOF	00		
Ridge	100	6000	11	60	55F	03	-	\$10pe	HG-CI	6009	11	60	558	03	Sec. 2	No.
CPU I	Indet	180	7.4	84	ROF	041	114	CPU	Inded	250	7.4	845	HOF	04		

FIG 3: HYBRID FEATURE SELECTION

FIG 4 describes hybrid feature extraction. The features selected by hybrid feature selector can be considered that have no irrelevant features, but also have redundant features. In power price forecasting data requires non-linear mapping to find an appropriate low dimensional value. Kernel Principle Component Analysis (KPCA) uses kernel function to deal with high dimensional and low dimensional data.

KPCA Feature Extraction Vee product trand price unit quality. tamped. D bibs char 000 899 900 8 004 4 bibs char 000 899 900 8 004 4 bibs char 000 900 775 01 4 024 bibs char 000 15 75 657 01 4 024 4 bibs char 75 357 02 1 4 024 4 4 bibs char 75 357 02 1 4 6 6 6 6		RID F.	EATU	RE F	EXTRA	CTIO	N				
KPCA Feature Extraction Interv product framed refer unt quality, immer. D table chair 00 969 00 86 70 90 0.4 table chair 000 969 00 86 70 90 0.4 table chair 000 000 77 34 0.4 1 tablesta som2 2000 15 75 675 0.1 1 tablesta som2 2000 15 75 657 0.1 1 tablesta som2 200 15 75 657 0.1 1 1 1 1 1 1 1											
KPCA Feature Extraction View prode firsd min numbe, termsec. 0 table cbar 00 969 900 40 00 table cbar 00 969 707 34 004 table cbar 000 900 40 00 40 modes 900 000 157 75 657 01 tablesit 1c00 2000 15 75 647 01 tablesit 1c00 2000 15 75 647 01 tablesit 1c00 2000 15 75 647 01 tablesit 1c00 15 75 547 02 16 16 16 tablesit 1c00 18 75 357 02 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16											
KPCA Feature Extraction Week product fraind mini quality. temper 0 table chair 00 99 900 80 0.0 table chair 00 99 900 80 0.0 table chair 00 99 900 80 0.0 tables 980 0.0 77 24 0.2 tables 0.00 0.0 77 24 0.2 tables color 100 557 10 temesta 100 2000 15 75 10 temesta 100 15 75 14 0.2 tam hasels 7000 18 75 357 0.2 tam hasels 7000 18 75 357 0.2 tam hasels 7000 18 75 357 0.2 tam hasels 7000											
produ trand trand trands trands <thtrands< th="" thr<=""><th>KPC</th><th>A Featu</th><th>re Extra</th><th>ction</th><th>View</th><th></th><th></th><th></th><th></th><th></th><th></th></thtrands<>	KPC	A Featu	re Extra	ction	View						
Bolie Cutar 000 809 000 80 0.0 4 Colds 809 000 56 7 89 0.04 4 Insise 000 000 56 7 89 0.04 4 Model Song 000 100 707 34 0.54 Model Song 000 100 707 34 0.54 Model Song 100 1000 10 707 14 0.54 Model Song 100 1000 10 75 0.1 1 Model Song 100 557 0.1 1 1 1 1 Model Song 15 75 447 0.2 1 </th <th>product</th> <th>brand</th> <th>price</th> <th>unit</th> <th>quality</th> <th>temper</th> <th>ID</th> <th></th> <th></th> <th></th> <th></th>	product	brand	price	unit	quality	temper	ID				
doths 688 0.00 56 7 89 0.04 Medial 0.00 0.00 75 24 0.24 0.24 Medial 0.00 0.00 75 24 0.24 0.24 Medial 0.00 200 75 56 0.14 0.14 Medial 0.00 200 75 56 0.14 0.14 Medial 1.00 2000 12 75 637 0.14 Medial 1.00 2000 12 75 637 0.1 Medial 1.00 2000 15 75 637 0.1 Medial 1.00 108 75 637 0.2 1 Mark 1.000 18 75 327 0.2 1 Mark 1.000 18 75 327 0.2 1 1.4 1.4 1.4 Mark 1.6 0.00 18 75 2.	table	chair	000	989	900	88	00				
Name Dot No Pic Pic Pic Method Log Dot Pic Dit Dit Dit Method Log Dot Pic Dit Dit Dit Dit Method Log Dit Dit Dit Dit Dit Dit Dit Method Log Dit	cloths	989	000	56	7	89	034				
Network Loop 25000 17 80 7000 91 Metwork Loop 20000 12 50 556 01 Metwork Loop 20000 12 50 557 01 Metwork Loop 20000 12 55 557 01 Metwork Loop 20000 12 75 637 01 Metwork Loop 10000 15 75 637 01 Metwork Loop 1000 18 75 137 02 Tan Abuellis 0000 18 75 327 02 Tan Abuellis 0000 18 75 327 02 Tan Abuellis 0000 18 75 327 02 Indige Loop 18 75 327 02 Indige Loop 18 75 337 02 Metge Coop	holovici	900 800v	20000	15	76	34 85E	01				
Intervation Info 1000 1000 12 00 557 01 Mediation Ammunication Station	televisi	sony	25000	17	80	70F	01				
Methodsis Locidy Josofie Starting Locidy Locidy <thlocidy< th=""> <thlocidy< th=""> <thloci< td=""><td>televisi</td><td>IGO</td><td>18000</td><td>20</td><td>50</td><td>50F</td><td>01</td><td></td><th></th><td></td><td></td></thloci<></thlocidy<></thlocidy<>	televisi	IGO	18000	20	50	50F	01				
Methods ammalu 35000 25 85 85F 01 Methods ammalu 30000 21 75 637 01 Methods ammalu 30000 21 75 637 01 Methods somotion 15 75 657 01 Mark B000 18 75 357 02 Mark B000 16 75 357 03 Mode Goodonoo 15 75 657 03 Mode Goodonoo 15 557 03 Methods Mode Goodono 34 45 669 04 Mode Goodono <	televisi	IGO	30000	12	60	55F	01				
Boldwidi, Jammu, 2000 21 75 635 01 Boldwidi, Jammu, 2000 15 75 647 0 Stat Abuellis 100 15 75 647 0 Stat Abuellis 100 118 75 357 02 1 Stat Abuellis 100 118 75 357 02 1 Stat Abuellis 100 118 75 357 02 1 <td>televisi</td> <td>samsu</td> <td>35000</td> <td>25</td> <td>85</td> <td>85F</td> <td>01</td> <td>- 11</td> <th></th> <td></td> <td></td>	televisi	samsu	35000	25	85	85F	01	- 11			
memoral. solution 100 15 15 44 0.0 fib in handle bood 15 15 44 0.0 fib in handle bood 15 75 44 0.0 fib in handle bood 15 75 44 0.0 fib in handle bood 15 75 35 0.2 fib in handle bood 16 75 25 0.2 fib in handle bood 16 75 657 0.3 fib in handle bood 15 567 0.3 fib in handle bood 14 56 567 0.3 fib in handle bood 14 56 567 0.3 fib in handl	televisi	samsu	30000	21	75	63F	01	- 11			
Too Develops Dood 18 75 157 02 fino bagaj 600 18 75 127 02 fino bagaj 600 18 75 127 02 fino bagaj 600 18 75 257 02 finoje cold 18 75 257 02 finoje cold 18 75 657 03 finoje cold 18 75 657 03 finoje cold 18 75 657 03 finoje cold 13 60 757 03 finoje cold 13 60 57 03 finoje cold 14 669 04 Y finoje cold 14 669 04 Y finoje cold 14 669 04 Y	televist	sony	20000	15	75	65F	01				
Ten Davella TOO 18 75 127 02 Ten Dagi DOO 18 75 337 02 Ten Dagi DOO 18 75 337 02 Ten Dagi DOO 18 75 257 02 Tendes LG 2000 15 75 657 03 Tedge LG 2000 15 75 657 03 Tedge LG 2000 15 56 03 16 Tedge LG 2000 13 50 507 03 16 Tedge LG 2000 14 60 559 03 16 <t< td=""><td>fan</td><td>havells</td><td>8000</td><td>18</td><td>75</td><td>35F</td><td>02</td><td></td><th></th><td></td><td></td></t<>	fan	havells	8000	18	75	35F	02				
fm baya 6000 18 75 337 02 mbge Lo3 0000 18 75 257 02 mbge Lo3 20000 18 75 657 03 mbge Lo3 0000 11 707 03 707 03 mbge Lo3 0000 11 00 559 03 7 Next	fan	havells	7000	18	75	12F	02				
fan bagij 4000 18 75 25F 02 fndge LG 2000 15 75 65F 0.3 fndge bogodaj 2000 17 88 70F 0.3 fndge LG 5000 13 50 56F 0.3 fndge LG 5000 14 60 55F 0.3 fndge LG 5000 34 46 66F 0.4 fndge LG 5000 34 46 66F 0.4	fan	bajaj	6000	18	75	33F	02				
Intege LG 20000 15 75 657 03 Intege pocad 2000 77 88 707 03 Intege pocad 2000 78 707 707 707 707 707 707 707 707 7	fan	bajaj	4000	18	75	25F	02				
Indge gooday 25000 17 88 70F 03 Indge IGO 5000 13 50 50F 03 Indge IGO 6000 11 60 55F 03 Venture 100 8000 16 86 66F 04 Venture 100 86 66F 04	fridge	LG	20000	15	75	65F	03				
monge IIGO 5000 13 50 50F 03 molge IIGO 6000 11 60 55F 03 (2PI intel 3000 34 55 66 04	fridge	goodraj	25000	17	88	70F	03	- 11			
muge 160 8000 11 80 507 03 7 Next	mage	IGU	5000	13	50	SUF	03				
	CPU	Intel	35000	34	85	SOF	04	7	Next		
	Ludy .	unel		.194	0.1		100				

FIG 4: HYBRID FEATURE EXTRACTION

(A High Impact Factor, Monthly, Peer Reviewed Journal) Website: <u>www.ijircce.com</u> Vol. 6, Issue 1, January 2018

FIG 5 describes the classification, which can done on the extracted features for accurate price forecasting.

Class	(fration)	LG good	nei	i .	0		
		i i i i i i i i i i i i i i i i i i i	iung		View Data		
G	20000	15	quality_1. 75	65F	4D 03		
~	20000	10	15	1.57			
						Store	

FIG 5: CLASSIFICATION

	PI	REDICI	ED POV	VER PRIC	E									
Show d	na Show	Liffeteney												
brand	price	unt	0	qualit_range	Inter	(ande								
LG	20000	15	03	75	65F	1								
LG	20000	15	03	75	. 45F	-			_					
LG	20000	15	03	78	19	Marina.			1.0	Y.				
	10004		43			0	iel Tou	Predicted C	•					

FIG 6 describes the predicted data. The predicted power price is showed from the classification results.

FIG 6: PREDICTED POWER PRICE

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com

Vol. 6, Issue 1, January 2018

VII. CONCLUSION AND FUTURE WORK

An electricity price forecasting framework, which consists of two-stage feature processing and improved SVM classifier. The end result produces the predicted electricity price. For future work, location based dataset is used. This method using the extracted model instances to find the most two similar regions between two cities by Spatial Distribution. The result will show that the regions are both more consistent with the data in terms of predictive performance.

REFERENCES

- 1. Abedinia. O., Amjady. N., and Zareipour. H., A new feature selection technique for load and price forecast of electrical power systems, IEEE Transactions on Power Systems, DOI: 10.1109/TP-WRS.2016.2556620, 2016.
- 2. Alsheikh, M.A., Niyato. D., Lin S., Tan. H.P., and Han. Z., Mobile big data analytics using deep learning and Apache Spark, IEEE Network, Vol. 30, No. 3, May.-Jun. pp. 22-29, 2016.
- 3. Erol-Kantarci. M., and Mouftah. H.T., Energy-efficient information and communication infrastructures in the smart grid: a survey on interactions and open issues, IEEE Communications Surveys and Tutorials, Vol. 17, No. 1, pp. 179-197, 2015.
- 4. Li. J., Ding. L., and Ying X., Differential evolution based parameters selection for support vector machine, IEEE International Conference on Computational Intelligence and Security, pp. 284-288, 2013.
- 5. Qiu. Z W., Multivariable mutual information based feature selection for electricity price forecasting, in Proceedings of International Conference on Machine Learning and Cybernetics, pp. 168-173, 2012.
- 6. Shiri A., Afshar. M., Rahimi-Kian A., and Maham. B., Electricity price forecasting using Support Vector Machines by considering oil and natural gas price impacts, IEEE International Conference on Smart Energy Grid Engineering (SEGE), pp.1-5, 2015.
- 7. Wang K., Li H., Feng Y., and Tian G., Big data analytics for system stability evaluation strategy in the energy internet, IEEE Transactions on Industrial Informatics, Vol. PP, No. 99, pp.1-1, 2017.
- 8. Wang K., Zomaya A., Xu C., Zhang Y., Robust Big Data Analytics for Electricity Price Forecasting in the Smart Gri, 2017.
- 9. Wang K., Ouyang Z., Krishnan R., Shu L. and He L., A game theory based energy management system using price elasticity for smart grids, IEEE Transactions on Industrial Informatics, Vol. 11, No.65, pp. 1607-1616, 2015.