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ABSTRACT: Software development is increasing rapidly. For a few reasons, the software brings many defects. In the 
development of software testing each module in the software is the main stage to reduce software defects. If the 
developer or testers can correctly predict software defects, you can reduce costs, time and effort. This paper shows a 
comparative study of existing methods in a prediction of software defects based on classification rules mining. We 
propose a method for this process and we select different classification algorithms. In this analysis we take historical 
datasets like NASA MDP dataset for prediction of performance in the software defects. The results of this method 
show that we comparing to proposed new algorithm with different algorithms according to the classification rule 
mining of different data sets. 
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I. INTRODUCTION 

A.  Introduction to Software Defect Prediction: 
In recent years, the demand for software quality has increased dramatically. As a outcome, issues are related to 

testing, becoming progressively more critical. The ability to measure software defects is more significant to minimize 
costs and improve the overall efficiency of the testing process. Few of software components are the reason of major 
amount of defects in the software system. 

Knowing the causes of possible defects and determining the general software process areas that may need to be taken 
into description from the initialization scheme could save time and effort. The chance of premature estimating the 
possible defects of software could help on preparation, scheming and executing software development activities. The 
low-cost method of defect analysis is to learn from past mistakes to prevent future mistakes. Today, we can extract 
several datasets of data to find useful knowledge about defects.  
Using this information should possibly be able to: 

1. Identify potential software failures. 
2. Estimate the unique number of defects and 
3. Find out the possible causes of software defects. 

B. Objective 
Taking the signs of the investigation, there has been sufficient scope to improve the prediction of software 

defects. 
The objectives of this research are summarized to the following: 

 To efficiently remove the noise in the novel dataset using latest filtering mechanism. 
 To create novel algorithm to predict software defects. 
 Using efficient classification algorithm for better prediction of software defects. 
 Using efficient metrics and methods to evaluate the result. 
 To create low-cost software development. 
 To reduce time for tracking faultiness and effort. 
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II. BACKGROUND & LITERATURE SURVEY 

A. Data Mining for Software Engineering: 
In order to improve productivity and software quality, software engineers are applying data mining algorithms 

to a variety of software engineering tasks. Many algorithms can help engineers understand how to call API methods 
provided by libraries or complex frameworks, and the documentation is inadequate. In terms of maintenance, these 
types of data mining algorithms can helps to determine which code locations should be changed when changing other 
code locations. The software engineer can also use the data mining algorithms to find possible defects that may cause 
future failures on the site and identify lines of code (LOC) errors that are responsible for known faults. 
B. Software defect predictor 

Defect predictors are tools or methods that guide test activities and software development lifecycles. According to 
Brooks, half of the software development costs are in unit and system testing. Harold and Tahat also believe that the 
testing phase requires about 50% or more of the entire project progress. Thus, the main challenge is the testing phase 
where professionals are looking for predictors that indicate possible defects before the test begins. This can effectively 
allocate them for limited resources. The defect prediction factors are used to order modules that are verified by 
verification and validation teams: 

 If do not have enough resources to check the entire code, defect predictors can be used to increase the chances 
of being checked for defects. 

 If check the entire code, but the inspection process will take several weeks or months to complete, you can use 
the defect predictors to improve the possibility that the error module will be checked in advance. This is useful 
because it allows the development team to inform which modules need rework early, so it gives more time to 
complete the review before delivery. 

C. Related Works 

Regression via classification 

In 2006, Bibi, Tsoumakas, Stamelos, Vlahavas, applied the machine learning method to estimate the number 
of defects that were referred to as the classification of the route classification (RFC) [4]. The whole process by 
classification (RFC) regression involves two important steps: 

 Discrete numerical variables to learn the classification model, 
 In the inverse process of a numerical prediction model transformation class output. 

Static Code Attribute 
Menzies, Greenwald and Frank (FGM) [5] published a study in the journal 2007 comparing two machine 

learning techniques (the rules incorporate naive Bayesian) performance prediction of defective software components. 
To do this, they use the library MDP NASA, which, during the survey, contains 10 separate data sets. 
ANN 

In 2007, Casi Gondra [6] used to predict defective machine learning methods. He uses artificial neural 
networks as apprenticeships. 
Embedded software defect prediction 

In 2007, oral. And Bender [7] used Multi-Layer Perceptron (MLP), NB, VFI (Voting Function Interval) for 
embedded software defect prediction. It has been used to evaluate only 7 datasets. 
Association rule classification 

In 2011, Pojun Karel [3] used a CBA2-based rule-based association for predicting software defect 
classification. Classification of association rules used in these surveys. And they compared to the other classification 
rules C4.5 and the Ripper. 
Defect-proneness Prediction framework 

In 2011, Song Jia, Liu Yinghe proposed a software framework for predicting the tendency to defects. In this 
study, the learning process of M * N cross-validated data sets (NASA, Softlab dataset) was used. They used three 
classification algorithms (Naive Bayes and OneR, J48), and compared with the FGM framework [5]. 
The 2010 survey was conducted by Chen Sen, Du GE completed [8] software defects in data mining prediction. 
Probabilistic relationship models and Bayesian networks were used in this study. 
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III. PROPOSED SCHEME 

A. Overview of the Framework 
Before creating a prediction model for defects and using it for the purpose of forecasting, we must first 

determine what apprenticeship or learning algorithm should be used to build the model. Thus, the predictive 
performance of the apprenticeship program should be determined, especially for future data. However, this step is often 
overlooked, so the resulting prediction model can be unreliable. As a result, we use outline for prediction of software 
defects to provide guidance to address these potential defects 
The framework consists of two parts: 

1) Scheme evaluation and 
2) Defect prediction. 

The details contained in Figure 3.1. During the evaluation phase of the program, the results of the historical 
data of the different learning programs are evaluated to determine whether the learning program is not good enough to 
predict the purpose or to select the best group of competing programs. 
In Figure 3.1, we can see that the historical data is divided into two parts: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.1 Proposed Framework 

Based on the report of the first-level performance, the learning scheme is selected and used to establish the 
prediction model and predict the software defects. Figure 3.1, we note that all the historical data come here to build the 
forecast. This is very different from the first level; it is very useful to improve the generalization ability of the forecast. 
Once a new software component is forecasted that can be used to predict the tendency to be flawed. 

MGF presented [5] a controlled experiment and reported the excavation of naive Bayesian data with log filter 
performance and attribute selection, which was carried out with the appropriate data to be evaluated. This is because 
they use two training data (which can be regarded as historical data) and tests (which can be considered as new data) to 
classify the attributes, while the tag new data is not provided to the selection of the attributes in practice. 

Scheme Evaluation 

Defect Prediction 

New data 

Learning 

Predicting 

Predictor 
Predictio
n Results 

Historical 
data 

Training 
data 

Test data 

Learning 

Testing 

Learners 

Performance 
Report 

Learning 
Schemes 

http://www.ijircce.com


         

                    ISSN(Online):  2320-9801 
                 ISSN (Print) :  2320-9798                                                                                                                         

International Journal of Innovative Research in Computer 
and Communication Engineering 

(A High Impact Factor, Monthly, Peer Reviewed Journal) 

Website: www.ijircce.com 

Vol. 5, Issue 11, November 2017           

Copyright to IJIRCCE                                                            DOI: 10.15680/IJIRCCE.2017. 0511031                                         16531                             

  

B.  Scheme Evaluation 
The evaluation program is an important part of the framework for software defect prediction. At this stage, 

different learning programs are evaluated and built with them to test the learners. The first question of the evaluation of 
the program is how to divide historical data into training and testing. As described above, the test data must be 
independent of the pupil's configuration. It is necessary to assess the performance of new data for learners' 
prerequisites. Cross validation is generally used to estimate the accuracy of the work with the actual prediction model. 
The circular cross validation involves the compilation of data into complementary subsets that perform analysis in other 
subsets of analysis and validation of a subset. In order to reduce variability, multiple rounds of cross validation were 
performed using different partitions, and the results were validated in two rounds. 

In our framework, we used to estimate the proportion of the performance of each prediction model, that is, 
each data set is first divided into two parts, after which the lessons are predicted in 60% of the cases, and then the 
remaining 40% of the test. 

In order to overcome any impact of management and obtain reliable statistical data, each experimental residual 
molecule also repeats M times and is repeated at each iteration of the data set. Thus, in general, the model M * N (N = 
data set) is constructed during the total evaluation period; and M * N results are obtained for each learning pattern of 
performance data in each group. 

After the split training test each round is both training data and learning mode (S) for building a student. The 
learning scheme is data preprocessing, a method of selecting method properties and learning algorithms. 

1. A data preprocessor 
 Training data for preprocessing, such as eliminating outliers, missing numerical discrepancies or 

attribute values processing and processing. 
 The preprocessor is used here - the NASA preprocessing tool 

2. An attribute selector 
 We considered the MDP data from all the attributes provided by NASA. 

C.  Scheme Evaluation Algorithm 
Data: Historical Data Set 
Result: The mean performance values 
Step 1: M=12 :No of Data Set 
Step 2:  i=1; 
Step 3: while i<=M do 
Step 4: Read Historical Data Set D[i]; 
Step 5: Split Data set Intances using % split; 
Step 6: Train[i]=60% of D; % Training Data; 
Step 7: Learning(Train[i],scheme); 
Step 8: Test Data=D[i]-Train[i];% Test Data; 
Step 9: Result=TestClassi_er(Test[i],Learner); 
Step 10: end 

Algorithm 1: Scheme Evaluation 
D.  Defect prediction 

Predicting the defects of our framework is simple; it includes forecasting and predicting construction deficiencies. 
During the construction period: 

1. The learning program is selected as a work report. 
2. A prediction is structured as having a selected learning plan and complete historical data. When evaluating a 

planned study, the student is established with test data from the test and test data. His final performance is 
averaged in every round. The assessment shows that the effective coverage of all the data. So, using all the 
historical data to build the forecast, it is expected to have a larger capacity for the built-in forecast for larger 
capacity. 

3. Once the forecast is established and the new data is in the same way as historical data, the built-in predictions 
can be used to predict the pre-processed data for new software defect handling. 
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E. Difference between Our Framework and Others 
So, to summarize the main differences between our framework and others in the following: 

1) We choose all the learning plans, not just out of the learning algorithm, attribute selector or data preprocessing 
unit; 

2) We use the appropriate mechanism to assess the performance of the data architecture. | -NASA set MDP [9] 
data. 

3) We selected the training data set (60%) and the test data set (40%) percentage split. 

F.  Data Set 

4) We use data from the public repository NASA MDP, which also uses MGF and many other countries, for 
example, [10], [11], [12], [13]. Therefore, a total of NASA MDP 12 data sets. 

5) Table 3.1 and 3.2 Basic profile information are provided. Each data set consists of a series of software 
modules (examples), each of which contains defects and several attributes of static software code 
corresponding to the number. After preprocessing, the module contains one or more defects marked as faulty. 

6) A more detailed description of the attributes of the source code or MDP dataset is available from [5]. 
 

Table 3.1 NASA MDP Data Sets 

Dataset System Language Total Loc 
CM1-5 Spacecraft Instrument C 17K 
KC3-4 Storage Management for ground data JAVA 8K and 25K 
KC1-2 Storage Management for ground data  C++ * 
MW1 Database C 8K 
PC1,2,5 Flight Software C 26K 
PC3,4 Flight Software C 36K 

Table 3.2 Datasets 

Dataset Attribute Module Defect Defect(%) 
CM1 38 344 42 1.22 
JM1 22 9593 1759 18.34 
KC1 22 2096 325 15.5 
KC3 40 200 36 18 
MC1 39 9277 68 0.73 
MC2 40 127 44 34.65 
MW1 38 264 27 10.23 
PC1 38 759 61 8.04 
PC2 37 1585 16 1.0 
PC3 38 1125 140 12.4 
PC4 38 1399 178 12.72 
PC5 39 17001 503 2.96 

G. Performance Measurement 
Based on the confusion matrix given in Table 4.3, it is used by many researchers, such as the measured yield, 

[14], [5]. Table 3.3 shows the confusion matrix for the problem of two kinds of values with positive and negative 
classes. 
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Table 3.3 Confusion Matrix 

 Predicted Class 
 
Actual Class 

 Positive Negative 
Positive True Positive False Negative 
Negative False Positive True Negative 

The proposed program software defects are based on the accuracy of the prediction, 

Sensitivity, Specificity, Balance Area defined as: 

Accuracy= ்ା்ே
்ା்ேାிାிே

 

Sensitivity= ்
்ାிே

 

Specificity = ்ே
ிା்ே

 

IV. RESULTS AND DISCUSSION 

This section provides some simulation results from the so-called MATLAB (version 2009a) simulation software tool 
to compile the classification algorithm. The proposed work is further compared with the appropriate scheme. 
According to the best precision values, we have chosen one of the ranking algorithms 8 for many classification 
algorithms. All the evaluation values, and compares them with different parameter performance measurements. 
A.  Accuracy 

From the precision table 4.1, we can see different algorithms that allow different precision in different datasets. But 
the average yield is almost the same. Storage management software (KC1-3) LOG, J48G provides a better precision 
value. For the C programming language (MW1) database software only part of the application of higher precision 
values 

Table 4.1 Accuracy 

Methods NB LOG DT JRip OneR PART J48 J48G Proposed 
CM1 83.94 87.68 89.13 86.23 89.13 73.91 86.23 86.96 89.13 
JM1 81.28 82.02 81.57 81.42 79.67 81.13 79.8 79.83 83.04 
KC1 83.05 86.87 84.84 84.84 83.29 83.89 85.56 85.56 87.91 
KC3 77.5 71.25 75 76.25 71.25 81.25 80 82.5 84.8 
MC1 99.34 99.27 99.25 99.22 99.3 99.19 99.3 99.3 99.34 
MC2 66 66.67 56.86 56.86 56.86 70.59 52.94 54.9 69.23 
MW1 79.25 77.36 85.85 86.79 85.85 88.68 85.85 85.85 89.14 
PC1 88.82 92.11 92.43 89.14 91.45 89.48 87.83 88.49 89.62 
PC2 94.29 99.05 99.37 99.21 99.37 99.37 98.9 98.9 99.37 
PC3 84.38 84.67 80.22 82.89 82.89 82.67 82.22 83.56 84.02 
PC4 87.14 91.79 90.18 90.36 90.18 88.21 88.21 88.93 92.27 
PC5 96.56 96.93 97.01 97.28 96.9 96.93 97.13 97.16 97.28 
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B.  Sensitivity 

Precision Table 4.2, we see, NB provides the largest set of data to perform better algorithms. For Decision Table 
gives zero sensitivity (sometimes), which means that the whole class is considered true. LOG and OneR part, J48, J48G 
gives the average rate of return. 

Table 4.2 Sensitivity 

Methods NB LOG DT JRip OneR PART J48 J48G Proposed 
CM1 0.4 0.267 0 0.2 0.133 0.333 0.2 0.2 0.483 
JM1 0.198 0.102 0.07 0.157 0.109 0.03 0.131 0.123 0.198 
KC1 0.434 0.238 0.197 0.328 0.254 0.32 0.32 0.32 0.450 
KC3 0.412 0.412 0.118 0.118 0.176 0.353 0.353 0.353 0.412 
MC1 0.548 0.161 0.194 0.161 0.161 0.194 0.161 0.161 0.693 
MC2 0.572 0.545 0 0 0.091 0.5 0.045 0.045 0.591 
MW1 0.429 0.286 0.429 0.143 0.071 0.286 0.214 0.214 0.429 
PC1 0.28 0.24 0.16 0.16 0.08 0.36 0.24 0.24 0.51 
PC2 0.333 0 0 0 0 0 0 0 0 
PC3 0.986 0.178 0 0.233 0.014 0.137 0.288 0.288 0.986 
PC4 0.431 0.538 0.231 0.508 0.323 0.677 0.692 0.677 0.577 
PC5 0.427 0.308 0.332 0.521 0.303 0.474 0.498 0.479 0.491 
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C.  Specificity 

From the specific form, we can see some algorithms that allow 100% of the specificity and cannot be regarded as 
their respective zero sensitivity. These algorithms can give incorrect predictions. According to the sensitivity and 
specificity, because they give 100%, but 0% of the sensitivity of the high specificity of the algorithm should not 
consider Decision Table prediction software defects. 

Table 4.3 Specificity 
Methods NB LOG DT JRip OneR PART J48 J48G Proposed 
CM1 0.893 0.951 1 0.943 0.984 0.789 0.943 0.951 0.986 
JM1 0.956 0.988 0.99 0.968 0.957 0.994 0.954 0.956 0.956 
KC1 0.898 0.976 0.959 0.937 0.932 0.927 0.947 0.947 0.983 
KC3 0.873 0.794 0.921 0.937 0.857 0.937 0.921 0.952 0.922 
MC1 0.947 1 0.999 0.999 1 0.999 1 1 1 
MC2 0.724 0.759 1 1 0.931 0.862 0.897 0.931 1 
MW1 0.848 0.848 0.924 0.978 0.978 0.978 0.957 0.957 0.978 
PC1 0.943 0.982 0.993 0.957 0.989 0.946 0.935 0.943 0.999 
PC2 0.946 0.997 1 0.998 1 1 0.995 0.995 1 
PC3 0.219 0.976 0.958 0.944 0.987 0.96 0.926 0.942 0.966 
PC4 0.929 0.968 0.99 0.956 0.978 0.909 0.907 0.917 0.928 
PC5 0.983 0.99 0.991 0.987 0.99 0.985 0.986 0.987 0.990 
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D.  Comparison with other's results 
• In 2011, Song Jia, Liu Ying and put forward a general framework. In this respect, they use the OneR algorithm for 
predicting defects, but should not be considered as a drawback for prediction because it gives 0 times the sensitivity 
and balance values smaller than others. 
• FGM used 10 datasets in 2007, and our study used 12 sets of data for more data in each module. And our result is that 
the balance sheet value is also higher than the effect. 
• In different learning algorithms and other works used in the machine. In our study, the results of the comparative 
measurements were increased. Because we use the division ratio is mainly to improve the accuracy. 
 

V. CONCLUSION 

In our study, we tried to solve the problem of software defect prediction (classification) in different data mining 
algorithms. Proposed algorithm give predictive flaws the best overall performance and offers better performance than 
OneR and JRip. From these results, we saw that a preprocessing selection / attribute data can be used with different 
learning algorithms for different datasets, and no apprenticeships dominate, that play a different role, always 
outperforming all other data sets. This means that we have to choose different data sets for different learning programs, 
so the assessment and decision making process is very important. 
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