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ABSTRACT:  The problem of system modeling and identification has attracted considerable attention during the past 
decades because of a large number of applications in diverse fields. The modeling and identification of linear and 
nonlinear system through the use of measured experimental data is a problem of considerable importance in 
engineering. Models of real system are of fundamental importance in virtually all the disciplines. Models can be useful 
for system analysis i.e. for gaining a better understanding of the system. Models make it better understanding of the 
system.. In this light, the paper presents objective of the present work was to develop a neural network scheme for 
identification and parameter estimation of various types of nonlinearities. The identification procedure is based on 
Neural Network concepts involving back-propagation algorithm 
 
KEYWORDS: Nonlinear systems, System Identification, Artificial neural network, Back propagation Algorithm, 
Vanderpol Oscillator,  

I. INTRODUCTION 
 
Inverse problems of system identification and parameter estimation are crucial in nonlinear analysis. Response 

behaviour of nonlinear systems under specific excitation can be only predicted accurately when the system structure 
and the parameters are completely known. System identification is the task of a inferring a mathematical description of 
a dynamic system from a series of measurement on the system. A mathematical description of this kind is called a 
model of the system. There are two ways in which a model can be established: it can be derived using laws of nature, or 
it can be inferred from a set of data collected during a practical experiment with the system. The first method looks 
simple but it is very difficult to use them in real situations. The second method which is commonly referred to as 
system identification, in these situation can be useful for deriving the mathematical models 

While sufficient literature is available on system identification in general, most of this deals with systems described 
by linear differential equations or difference equations. However, motivated by the fact that almost all real systems 
exhibit some kind of nonlinear behaviour, lately there have been serious efforts on different approaches to nonlinear 
system identification. 

One of the key approaches towards identification in engineering systems has been Artificial Neural Network 
(ANN). An artificial neural network operates by creating connections between many different processing elements, 
each analogous to a single neuron in a biological brain. These neurons may be physically constructed or simulated by a 
digital computer. Each neuron takes many input signals, then, based on an internal weighting system, and produces a 
single output signal that's typically sent as input to another neuron. The neurons are tightly interconnected and 
organized into different layers. The input layer receives the input; the output layer produces the final output. Usually 
one or more hidden layers are sandwiched in between the two. This structure makes it impossible to predict or know 
the exact flow of data.   

II. RELATED WORK 
 
The earliest of the work in the field of nonlinear system identification using neural networks were introduced by Chu 

et al.[1] and Narendra et.al [2]. Further to that Billings et al[3] and Chen et al[4]  applied multilayer perceptron and the 
radial basis function network to nonlinear system identification. Worden et al. [5][6] demonstrated the application of 
multilayer perceptron neural networks for effective representation of nonlinear systems with single degree of freedom 
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nonlinear systems. This was subsequently followed by identification of nonlinear system with multiple degrees of 
freedom by Chassiakos et.al[7].  

Kosmatopoulos et al[8] and Pei et al.[9] presented a procedure for identification of nonlinear hysteretic dynamic 
system which used a static neural network module in conjunction with dynamic linear module. Subsequently Le Riche 
et.al.[10] and Song et al.[11] suggested that the neural network does not learn the function showing the relationship 
between input and  output but learns the relationship that links system features and its parameters.  Liang et al. [12] 
further investigated fuzzy adaptive neural networks with increased network training speed. Fan et.al [13] developed a 
hybrid approach embedding neural networks in a physical model to represent unknown nonlinearities. This was 
followed by a related study using radial basis function network by Saadat et al[14]. 

In addition to use of neural network as one of the tool for black box modeling of non linear systems, a lot of 
alternative approaches have been developed and extensively cited in nonlinear system identification literature. 

Earliest work on bypassing nonlinearity was proposed by Caughey [15][16][17] which involved replacing a 
nonlinear system with a given excitation by an equivalent linearized system with same excitation. The common 
statistical criterion used for bypassing non linearity is that the means square error (MSE) between the real life nonlinear 
system and its equivalent linearized system is kept to a minimum level. This subsequently lead to many advancements 
(Iwan et.al [18][19] and Roberts et.al[20]) in the field, however it has been observed that equivalent  linearization 
method of strongly nonlinear system fails to predict the response to an acceptable accuracy. 

Data which is considered during the identification process using Time domain approach is in the form of time series. 
Such techniques have the distinct advantage that the signals are directly provided by measurement devices and data 
processing can be accomplished in minimal time, Masri et.al [21] introduced the restoring force approach to time series 
identification. A parallel approach using forced state mapping was introduced by Crawley et.al [22][23].  The method 
were initially developed for SDOF but were soon developed for MDOF systems as well by Masri et.al [24]. Many 
alternative time-domain techniques have been proposed in the literature. 

The identification process in Frequency-domain methods takes the form of FRFs or spectra. The method for 
nonlinear system identification using frequency-domain was initially proposed by Yasuda et.al [25] which analyzed the 
systems with steady state response with external excitation. This was extended to chaotic systems by Yuan et.al [26] 
and for MDOF by Liang et.al [27] 

Modal analysis is undoubtedly the most popular approach to linear system identification and have been explored in 
detail by Heylen et al [28], Maia et.al [29], Ewins et.al[30]. In case of nonlinear systems, modal analysis is based on 
assumption of weak nonlinearities. 

III. PROPOSED WORK 
A. Introduction: 

Parameter estimation is the final step towards establishment of model with a good predictive accuracy. An 
important condition which affects the success of parameter estimation is that all the nonlinearities throughout the 
systems have been properly characterised. 

Several methods have been established methods for parameter estimation. Some of which are mentioned below: 
o The restoring force surface method. 
o Direct parameter estimation. 
o Auto regressive and NARMAX modeling. 
o The Hilbert transform. 
o The Volterra series. 
o Feedback of output. 
o Nonlinear resonant decay. 
 
In this present work of parameter estimation using artificial neural network Restoring Surface method has been 

used.  
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1) VanderPol Oscillator 
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                                 (eq.1) 

                                                
It represents non-conservative system in which energy is added to and subtracted from the system in an 

autonomous fashion, resulting in a periodic motion called a limit cycle. Here we can see that the sign of the damping 
term, changes, depending upon whether |x| is larger or smaller than unity. VanderPol’s equation has been used as a 
model for stick-slip oscillations, aero-elastic, flutter, and numerous biological oscillators, to name but a few of its 
applications. 

The restoring function is of the form of 
 

2( , ) ( 1 )f x y x y x                                                              (eq. 2) 
 
This system corresponds to the homogenous VanderPol equation which is used to model several mechanical 

and electrical systems. 
 

B. Proposed Neural Network Architecture: 

 
Since there are no set procedure to arrive at the topology, extensive experimentation was carried out with different 

topologies to arrive the best possible network. A single hidden layer is generally sufficient to represent a variety of 
continuous function.  

 
The Network topology finally found to best suit the given data was: 
 
Number of inputs =2 (displacement and velocity) 
Number of outputs=1 (restoring force) 
Number of hidden layer=1 
Number of hidden neurons =16 
Activation function: 
Hidden layer = logsig 
Output layer = purelin  
Algorithm: Levenberg Marquardt. 
Estimation method: Restoring Force surface Method 
Sampling time  
The convergence pattern for this network is shown in Fig. 1 
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Fig 1 Convergence of network during training phase 
 

C. Data set Generation for Training and Validation 

The response x and y of equation (1) is numerically simulated for the following data with  =0.2, initial condition 
vector. The response is shown in Figs. (2) and (3)  and  form the input to the neural network. The expected output as 
shown in Fig (4) is the restoring force f (x , y). 

 
Fig 2 Displacement response of VanderPol Oscillator 
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Fig 3 Velocity response of VanderPol Oscillator 

 
Fig 4 Restoring Force response of VanderPol Oscillator 

 
A three-layer feed forward neural network is trained using back propagation algorithm. Levenberg Marquardt 
algorithm was chosen as training algorithm. This was chosen after extensive experimentation with various algorithms 
the result of which is shown in Table 1. 

Table 1: Comparison of various Learning Algorithms 

 

 Sr 
no. 

Algorithms No. of 
Epochs 

Means square 
error(10-3) 

1. Variable learning rate 500 16.45 

2. Variable learning rate with momentum 500 14.61 

3. Resilient back propagation 500 6.39 

4. Fletcher Reeves Update 500 5.83 

5. Polak-Ribiere Update 500 3.67 

6. Quasi Newton algorithm 500 0.020261 

7. Levenberg Marquardt 233 Goal reached 
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All algorithms were tested with same training data with same initialization of weights. 

D. Neural Network Training and Validation 

Effect of change in initial conditions and parameters on the network performance was examined.  
 
(a) The initial condition: Input data  were generated by numerical simulation of VanderPol equation with following 

sets of new initial conditions. 
          

         (a) The initial condition: Input data [ ,x y ] were generated by numerical simulation of VanderPol equation with 
following sets of new initial conditions. 

           1 1(0), (0) 0.01, 0.01x y   
 

           2 2(0), (0) 0.1,0.1x y  
 

           3 3(0), (0) 0.1, 0.5x y  
 

Network response for various pairs of initial conditions is shown in Fig.5. 

 

(a)    1 1(0), (0) 0.01, 0.01x y   
    MSE=0.00467 

 

(b)    2 2(0), (0) 0.1,0.1x y  
  MSE=0.00752 
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(c)    3 3(0), (0) 0.1, 0.5x y  
    MSE=0.00121 

Fig 5 Effect of Initial Conditions on Network performance 
 

These data corresponding to various new sets of [ (0), (0)]x y  were given as an input to network, which was trained 

with data corresponding to[ (0), (0)] [0.01,0.01]x y  . The network was tested for different sets of initial conditions. 
Network is seen quite robust to change in initial condition. 
 
(b)  Effect of parameter : Changing is expected to have a greater effect on network prediction ability. Since a 

large  produces responses ( x , y ) out of range of values used during training. Fig. 6 shows the network performance 

when data generated using various values of was fed to network previously trained using data corresponding to value 

of 0.2  . 

 
(a)  =0.195       MSE=0.1686     
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(b)  =0.17     MSE=10.120     

 

 
 

(c)  =0.205     MSE=0.1350     

 
(d)  =0.23      MSE=2.8449 

Fig 6  Effect of value of  on network performance for VanderPol Oscillator  
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It is seen that the network when fed by the data other than  =0.2, now missing the peaks, since it has been never 
trained for that range of values. The behaviour of the performance can be observed can be shown in Fig.7.  

  
Fig 7 Variation of MSE w.r.t.    

 
(c)  Effect of noise: Network performance was tested in presence of noise. The network trained on noiseless data was 
tested with a data with additive white noise of power 0.01, the network performed satisfactorily with a MSE of 1.2523. 

. 
Fig 8 Effect of noise on network performance 

 
(d)  Effect of training period:  The effect of various training period was studied on network performance. Network 
trained on training period 0 to 10s was tested on data during 15 to 20s. But when the network trained on 10s to 20s was 
tested with data corresponding to 0 to 100s the network was not able to capture initial transient, as it was never trained 
to do so. 
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(a)Network performance on data of 15s – 20s  

 
(b) Network performance on data of 0s -10s  

Fig 9  Effect of sampling period on network performance 
 

(e) Effect of sampling time: Network performance was tested using data collected using different sampling times of 
t =0.05s and t =0.2s. The performance of network was seen unaffected by change in sampling time. 

 
(a) t =0.05s   MSE =1.0374e-004 
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(b) t =0.2s    MSE = 1.4960e-004 

Fig.10  Effect of sampling time t  on network performance for VanderPol   
               Oscillator 

 
(f) Effect of length of training set: Effect of length of training set was studied on the network performance. The 
network was trained with different length of data set. Not much effect of length of training set was found on the 
network performance          

IV. CONCLUSION AND FUTURE WORK 
 
During parameter estimation of Vanderpol Oscillator it was observed that the neural network models developed were 

quite robust to change in initial conditions, sampling time, sampling period, and length of training set. However it was 
observed that a substantial change in nonlinear stiffness term has a considerable effect on the network performance of 
VanderPol Oscillator. The network models were tested in presence of noise and it was observed that the network was 
quite robust to noise. Though only VanderPol was considered for identification stage, the same procedure can be 
applied for identification and classification of other non-linear systems also. In present study, the emphasis was on 
identification and parameter estimation of single-degree of freedom. Future work can be directed towards multi-degree 
of freedom system 
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