

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 3, March 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0503196 4675

Effective Improvement of Carry save Adder

K.Nandini1, A.Padmavathi1, K.Pavithra1, M.Selva Priya1, Dr. P. Nithiyanantham2
1UG scholars, Department of Electronics and Communication Engineering, Jay Shriram Group of Institutions,

Tirupur, Tamilnadu, India
2Head of the Department, Department of Electronics and Communication Engineering, Jay Shriram Group of

Institutions, Tirupur, Tamilnadu, India

ABSTRACT: CSA (Carry Save Adder) is a type of digital adder used in computer architecture to the computer sum of
three or more n-bit number in binary. It differ from other digital adders in that is outputs two numbers of the same
dimensions as the inputs one which is a sequence of partial sum bits and another which is a sequence of carry bits. CSA
is used to implement the adder circuit. In this paper, Look up Table and Booth Encoder techniques are used. LUT is for
speed of calculation, which is an array that replaces runtime computation with a simpler array indexing operation. The
savings in terms of processing time can be significant, since retrieving a value from memory is after faster than
undergoing an “Expensive” computation operation. Booth Encoder is used to or input, output reduces the number of
partial products. These techniques are used to reduce the power, time delay and area by using of modelsim software.
We can attain 30% speed improvement and 22% power reduction in Design units of DSP/multimedia Applications.

KEYWORDS: Carry Save Adder, Lookup Table, Modified Booth Encoder techniques, Flip-Flop, Multiplier.

I. INTRODUCTION

Power dissipation is recognized as a critical parameter in modern VLSI design field. To satisfy MOORE‘S law and to
produce consumer electronics goods with more backup and less weight, low power VLSI design is necessary. Dynamic
power dissipation which is the major part of total power dissipation is due to the charging and discharging capacitance
in the circuit. The golden formula for calculation of dynamic power dissipation is Pd = CLV2f. Power reduction can be
achieved by various manners. They are reduction of output Capacitance CL,reduction of power supply voltage V,
reduction of switching activity and clock frequency f. In this section we introduced the above three technologies to
encounter the unnecessary power dissipation problems CSA is mostly adopted in Multiplier circuits. Modified Booth
Encoding is adopted in Multiplier and VMFU. The method of CSA is best understood by applying it to Multipliers.
Fast multipliers are essential parts of digital signal processing systems. The speed of multiply operation is of great
importance in digital signal processing as well as in the general purpose processors today, especially since the media
processing took off. In the past multiplication was generally implemented via a sequence of addition, subtraction, and
shift operations. Multiplication can be considered as a series of repeated additions. The number to be added is the
multiplicand, the number of times that it is added is the multiplier, and the result is the product. Each step of addition
generates a partial product. In most computers, the operand usually contains the same number of bits. When the
operands are interpreted as integers, the product is generally twice the length of operands in order to preserve the
information content. This repeated addition method that is suggested by the arithmetic definition is slow that it is
almost always replaced by an algorithm that makes use of positional representation. It is possible to decompose
multipliers into two parts. The first part is dedicated to the generation of partial products, and the second one collects
and adds them. The basic multiplication principle is twofold i.e, evaluation of partial products and accumulation of the
shifted partial products. It is performed by the successive additions of the columns of the shifted partial product matrix.
The multiplier is successfully shifted and gates the appropriate bit of the multiplicand. The delayed, gated instance of
the multiplicand must all be in the same column of the shifted partial product matrix. They are then added to form the
product bit for the particular form. Multiplication is therefore a multi operand operation.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 3, March 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0503196 4676

II. CARRY SAVE ADDER

1. Adding Multiple Numbers
There are many cases where it is desired to add more than two numbers together. The straightforward way of adding
together m numbers (all n bits wide) is to add the first two, then add that sum to the next, and so on. This requires a
total of m – 1 addition, for a total gate delay of O (mlg n) (assuming look ahead carry adders). Instead, a tree of adders
can be formed, taking only O(lgm · lg n) gate delays. Using carry save addition, the delay can be reduced further still.
The idea is to take 3 numbers that we want to add together, x + y + z, and convert it into 2 numbers c + s such that x +
y + z = c + s, and do this in O(1) time. The reason why addition cannot be performed in O(1) time is because the carry
information must be propagated. In carry save addition, we refrain from directly passing on the carry information until
the very last step. We will first illustrate the general concept with a base 10 example.
 To add three numbers by hand, we typically align the three operands, and then proceed column by column in the
Same Fashion that we perform addition with two numbers. The three digits in a row are added, and any overflow goes
into the next column. Observe that when there is some non-zero carry, we are really adding four digits (the digits of x,y
and z, plus the carry).

 Carry: 1 1 2 1
 x : 1 2 3 4 5
 y : 3 8 1 7 2
 z : + 2 0 5 8 7

 sum: 7 1 1 0 4

The carry save approach breaks this process down into two steps. The first is to compute the sum ignoring any carries:

 x: 1 2 3 4 5
 y: 3 8 1 7 2
 z: + 2 0 5 8 7

 s: 6 0 9 9 4

Each si is equal to the sum of xi + yi + zi modulo 10. Now, separately, we can compute the carry on a column by column
basis:

 x: 1 2 3 4 5
 y: 3 8 1 7 2
 z: + 2 0 5 8 7

 c 1 0 1 1

In this case, each ci is the sum of the bits from the previous column divided by 10 (ignoring any remainder). Another
way to look at it is that any carry over from one column gets put into the next column. Now, we can add together c and
s, and we’ll verify that it indeed is equal to x + y + z:

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 3, March 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0503196 4677

Figure 1: The carry save adder block is the same circuit as the full adder.

One CSA block is used for each bit. This circuit adds three n = 8 bit numbers together into two new numbers.

 s: 6 0 9 9 4
 c: + 1 0 1 1

 sum: 7 1 1 0 4

The important point is that c and s can be computed independently, and furthermore, each ci (and si) can be computed
independently from all of the other c’s (and s’s). This achieves our original goal of converting three numbers that we
wish to add into two numbers that add up to the same sum, and in O(1) time.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 3, March 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0503196 4678

The same concept can be applied to binary numbers. As a quick example:

 x : 1 0 0 1 1
 y : 1 1 0 0 1
 z : + 0 1 0 1 1

 s : 0 0 0 0 1
 c : + 1 1 0 1 1

 sum : 1 1 0 1 1 1

What does the circuit to compute s and c look like? It is actually identical to the full adder, but with some of the signals
renamed.
Figure 1 shows a full adder and a carry save adder. A carry save adder simply is a full adder with the cin input renamed
to z, the z
 output (the original “answer” output) renamed to s, and the cout output renamed to c. Figure 2 shows how n carry save
adders are arranged to add three n bit numbers x,y and z into two numbers c and s. Note that the CSA block in bit
position zero generates c1, not c0. Similar to the least significant column when adding numbers by hand (the “blank”),
c0 is equal to zero. Note that all of the CSA blocks are independent, thus the entire circuit takes only O(1) time. To get
the final sum, we still need a LCA, which will cost us O(lg n) delay. The asymptotic gate delay to add three n-bit
numbers is thus the same as adding only two n-bit numbers.So how long does it take us to add m different n-bit
numbers together? The simple approach is just to repeat this trick approximately m times over. This is illustrated in
Figure 3. There are m−2 CSA blocks (each block in the figure actually represents many one-bit CSA blocks in
parallel) that we have to go through, and then the final LCA. Note that every time we pass through a CSA block, our
number increases in size by one bit. Therefore, the numbers that go to the LCA will be at most n + m − 2 bits long. So
the final LCA will have a gate delay of O(lg (n + m)). Therefore the total gate delay is O(m + lg (n + m)) Instead of
arranging the CSA blocks in a chain, a tree formation can actually be used. This is slightly awkward because of the odd
ratio of 3 to 2. Figure 4 shows how to build a tree of CSAs. This circuit is called a Wallace tree. The depth of the tree
is log32m.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 3, March 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0503196 4679

Like before, the width of the numbers will increase as we get deeper in the tree. At the end of the tree, the numbers will
be O(n+logm) bits wide, and therefore the LCA will have a O(lg (n + logm)) gate delay. The total gate delay of the
Wallace tree is thus O(logm + lg (n + logm)).

III. MODIFIED BOOTH ENCODER

Modified Booth Algorithm

Generally, we perform many mathematical operations in our daily life such as addition, subtraction, multiplication,
division, and so on. Let us consider the multiplication process that can be performed in different methods. Different
types of algorithms can be used to perform multiplication like grid multiplication method, long multiplication, lattice
multiplication, peasant or binary multiplication, and so on. Binary multiplication is usually performed in digital
electronics by using an electronic circuit called as binary multiplier. These binary multipliers are implemented using
different computer arithmetic techniques. Booth multiplier that works based on booth algorithm is one of the most
frequently used binary multipliers.

Booth Algorithm

Booth multiplication algorithm or Booth algorithm was named after the inventor Andrew Donald Booth. It can be
defined as an algorithm or method of multiplying binary numbers in two’s complement notation. It is a simple method
to multiply binary numbers in which multiplication is performed with repeated addition operations by following the
booth algorithm. Again this booth algorithm for multiplication operation is further modified and hence, named as
modified booth algorithm.

Modified Booth Algorithm

Booth multiplication algorithm consists of three major steps as shown in the structure of booth algorithm figure that
includes generation of partial product called as recoding, reducing the partial product in two rows, and addition that
gives final product.
For a better understanding of modified booth algorithm & for multiplication, we must know about each block of booth
algorithm for multiplication process.

Modified Booth Algorithm Encoder

This modified booth multiplier is used to perform high-speed multiplications using modified booth algorithm. This
modified booth multiplier’s computation time and the logarithm of the word length of operands are proportional to
each other. We can reduce half the number of partial product. Radix-4 booth algorithm used here increases the speed of
multiplier and reduces the area of multiplier circuit. In this algorithm, every second column is taken and multiplied by 0
or +1 or +2 or -1 or -2 instead of multiplying with 0 or 1 after shifting and adding of
every column of the booth multiplier. Thus, half of the partial product can be reduced using this booth algorithm. Based
on the multiplier bits, the process of encoding the multiplicand is performed by radix-4 booth encoder.
The overlapping is used for comparing three bits at a time. This grouping is started from least significant bit (LSB), in
which only two bits of the booth multiplier are used by the first block and a zero is assumed as third bit as shown in the
figure.

Bit Pairing as per Booth Recoding

The figure shows the functional operation of the radix-4 booth encoder that consists of eight different types of states.
The outcomes or multiplication of multiplicand with 0, -1, and -2 are consecutively obtained during these eight states.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 3, March 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0503196 4680

Figure 3.1 Modified booth encoder

Booth Recoding Table for Radix-4

The steps given below represent the radix-4 booth algorithm:

 Extend the sign bit 1 position if necessary to ensure that n is even.
 Append a 0 to the right of the least significant bit of the booth multiplier.
 According to the value of each vector, each partial product will be 0, +y, -y, +2y or -2y.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 3, March 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0503196 4681

Booth’s Encoder

Modified booth multiplier’s (Z) digits can be defined with the following equation:
Zj = q2j + q2j-1 -2q2j+1 with q-1 = 0

The figure shows, the modified booth algorithm encoder circuit. Now, the product of any digit of Z with multiplicand
Y may be -2y, -y, 0, y,2y. But, by performing left shift operation at partial products generation stage, 2y may be
generated. By taking 1’s complement to this 2y, negation is done, and then one is added in appropriate 4-2 compressor.
One booth encoder shown in the figure generates three output signals by taking three consecutive bit inputs so as to
represent all five possibilities -2X, -X, 0, X, 2X.

Partial Product Generator

If we take the partial product as -2y, -y, 0, y, 2y then, we have to modify the general partial product generator. Now,
every partial product point consists of two inputs (consecutive bits) from multiplicand and, based on the requirement,
the output will be generated and its complements also generated in case if required. The figure shows the partial
product generator circuit.

generated and its complements also generated in case if required. The figure shows the partial product generator circuit.
The 2’s complement is taken for negative values of y. There are different types of adders such as conventional adders,
ripple-carry adders, carry-look-ahead adders, and carry select adders. The carry select adders (CSLA) and carry-look-
ahead adders are considered as fastest adders and are frequently used. The multiplication of y is done by after
performing shift operation on y – that is – y is shifted to the left by one bit.
Hence, to design n-bit parallel multipliers only n2 partial products are generated by using booth algorithm. Thus, the
propagation delay to run circuit, complexity of the circuit, and power consumption can be reduced. A simple practical
example to understand modified booth algorithm is shown in the figure below.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 3, March 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0503196 4682

Practical Multiplication Example using Modified Booth Algorithm. For more technical help regarding modified booth
algorithm and also for designing electrical and electronics projects, you can approach us by posting your comments in
the comments section below.

The modified booth encoder is used to generate the partial products and it also used to reduce the number of partial
products.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 3, March 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0503196 4683

IV. LOOK UP TABLE

Concept:

The Look-up Table (LUT) is a common concept used to reduce processing time for applications that uses complex
calculations. Basically, the LUT contains data or results from the complex calculations needed by application, which
was done beforehand—once. By keeping the results in the LUT, when the application needs the values, instead of
having to do the calculations, it can just refer to the LUT and retrieve the values from it; bypassing the calculations. In
complex applications such as signal processing, image processing, device modeling, etc., complex calculations are
used repeatedly and using the LUT help tremendously by significantly reducing the processing time.

A simple analogy: when we were in elementary school, we used to memorize multiplications of small numbers. In
time, for example, we can say that 4 x 4 is 16, without having to calculate 4+4+4+4 (of course by first learning that to
count 4 x 4 is by adding 4 four times). Saves a lot of time, doesn’t it?

Application:

Currently, the LUT is intended to be used in a robotic movement control system. Again, the objective here is time; in
this case, increasing the robot’s response speed.

To illustrate, consider the following scenario. A RoboSoccer robot is able to determine a strategy among several
strategies given a condition in the field; such as: enemy position, its current position, the goal position, the ball position
and trajectory (if it is moving), etc. Once it evaluates the field condition, then the robot needs to select which is the
best strategy to reach its objective (i.e. reach the ball in the most efficient path while avoiding the opponent), then it
will formulate its path, do the calculations and sequence of movements, then execute it.

MULTIPLIER

A MUX is a digital switch that has multiple inputs (sources) and a single output (destination).
• The select lines determine which input is connected to the output.

Figure 5.1 4-to-1 multiplexer (mux)

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 3, March 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0503196 4684

The result of final multiplication and accumulation process1

Clock= 0
 S1 = 0011 ; S2 = 01
Output T1= 100ps

The result of final multiplication and accumulation process2

Clock = 1
S1= 0011 ; S2=01
Output T2=200ps
 T = T1+T2
 = (100+200) ps
T = 300ps

Power= Energy * Time
 = 4 * 300
 = 1200 pw

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 3, March 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0503196 4685

COMPARISION BETWEEN EXISTING AND THE PROPOSED

 Parameter Existing Proposed
Step1 Booth encoding Booth encoding
Step 2 Hibird csa Csa
Step 3 Not implemented Look up table
Step 4 Not implemented Mux
Step 5 Final addition Final addition

VI. CONCLUSION

 In this paper we are dissuced the effective improvement of carry save adder using modified booth algorithm.
By using, Look up Table and Booth Encoder techniques are used. LUT is for speed of calculation, that is an array that
replaces runtime computation with a simpler array indexing operation. The savings in terms of processing time can be
significant, since retrieving a value from memory is after faster than undergoing an “Expensive” computation
operation. We can reduce the power up to 24.4% and time delay is 300ps . By combining CSA and look up table
process we can form a CSA, which is the most suitable application.

REFERENCES

[1] New VLSI architecture of parallel multiplier-accumulator based on radix-2 modified booth algorithm Ho Seo and Dong-Wook Kim,IEEE
Volume 18,No2 Feb 2010
[2] A Spurious power suppression Technique for multimedia/Dsp applications, IEEE Transactions, Vol 56,No.1, Kuan-Hung Chen,Yuan-Sun Chu.
[3] C. S. Wallace, ―A suggestion for a fast multiplier,ǁ IEEE Trans. Electron Comput., vol. EC-13, no. 1, pp. 14–17, Feb. 1964.
 [4] A. R. Cooper, ―Parallel architecture modified Booth multiplier,ǁ Proc. Inst. Electr. Eng. G, vol. 135, pp. 125–128, 1988.
 [5] N. R. Shanbag and P. Juneja, ―Parallel implementation of a 44-bit multiplier using modified Booth‘s algorithm,ǁ IEEE J. Solid-State
Circuits,vol. 23, no. 4, pp. 1010–1013, Aug. 1988. [6] J. Fadavi-Ardekani, ―MN Booth encoded multiplier generator using optimizedWallace trees,ǁ
IEEE Trans. Very Large Scale Integr. (VLSI)Syst., vol. 1, no. 2, pp. 120–125, Jun. 1993.

http://www.ijircce.com

