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ABSTRACT:Artificial  intelligence  is  used  in   gaming  industry  to  enhance   game-play  of  the  system.The  
proposed  system  is aimed  at  developing  an  agent  to  play  classic  console  games  like  Mario  bros,  Pac  man,  
etc.  It  was  designed  to  start  from  scratch  with  very  little  domain  specific  knowledge  about  the  game.  It 
learnsto play the games, by hit-and-trials and evolutionary techniques.  The  agent  uses  genetic  programming  to  
select  the  best  from  a  pool  of  generated  neural  nets,  which  finished  game  levels  with  better  scores.  The  
implemented  agent  successfully  learned  to  play  two  types  of  video  games  without  knowing  their  rules  
beforehand. 
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I. INTRODUCTION 
 
Artificial  intelligence  has  been  used  in  the  gaming  industry  for  designing  the  behaviour  of  non-playable  
characters  and  enemy  characters  in  games.  But  designing  a  self-playing  intelligent  agent  that  could  learn  on  
its  own  to  play  a  game  posed  a  few  challenges. 
 
Some  basic  challenges,  like  how  to  make  software  understand  the  rules  of  game,  how  the  software  
understands  and  interacts  with  the  game  world  and  most  importantly  how  the  software  actually  makes  
decisions  to  play  the  game,  triggered  the  idea  of  evolving  such  an  agent. 
 
An  important  motivating  factor  was  to  develop  an  optimal  problem  solving  capacity  of  intelligent  agents  in  
the  game  world,  and  use  them  effectively  in  real  life  problems,  like  geographical  navigation,  maximizing  
profit  in  short  runs,  terrain  mapping,  etc.. 
 

II. RELATED WORK 
 
There  have  been  multiple  attempts  at  this  challenge  using  different  methods. 
 

1. Agents for games like chess, backgammon, poker etc. have been successfully developed.  One such 
noteworthy implementation is the Deep Blue by IBM.  Most  of  such  implementations  concerning  board-
games  like  chess  use  methods  of  informed  search  methods  (like  mini-max  algorithm  or  more  
advanced  search  methods  like  Monte  Carlo  Tree  Search).  This  class  of  agents  generally  requires  the  
entirety  of  game  rules  to  be  specified  before  playing. 

 
2. The  above  implementations  are  not capable  of  playing  any  general game,  because  they  are  generally  

written  to  tackle  specific  gameplay  and  techniques  used  in  one  game  do  not  transfer  as  they  are  to  
other  games.  
The  GGP  implementations,  on  the  contrary,  are  bots  which  take  input  as  rules  of  games  by  common  
interface  GDL  (Game  description  Language)  and  play  any  game  using  the  simple  tree-search  methods  
or  advanced  learning  algorithms.  The  games  used  in  the  GGP  competition  are  usually  variants  of  
existing  board  games,  or  otherwise  turn-based  discrete  games.  Game  Description  Language  (GDL)  is  
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used  to  describe  the rules  of  the  class  of  games  playable  within  the  GGP  framework,  i.e.  Finite, 
discrete, deterministic multi-player games of complete information.  GDL describes games in a variant of 
Datalog.  Game  states  are  defined  in  terms  of  facts  and  algorithms  for  computing  legal  moves,  
subsequent  game  states,  termination  conditions  and  terminal  scores  for  players  are  represented  as  
logical  rules.  Notable implementations include - Cluneplayer, developed by James Clune.  It uses DFS.  Flux 
player was developed by S.  Schiffel and M.  Thielscher and proved superior to Cluneplayer.  Similarly  to  
Cluneplayer,  it  depends  on  depth-first  game  tree  search  algorithm  with  few  enhancements  and  fuzzy  
logic  based  evaluation  functions. 
 

3. Dr.  Tom Murphy’s agent, to play Mario game.  From a sample gameplay recording, it formulates objective 
function.  The  objective  function  is  then  used  to  guide  search  over  possible  inputs,  using  an  emulator.  
The  purpose  of  the  agent  is  to  develop  an  elegant  and  simple  objective  function  through  which  a  
novel  gameplay  can  be  generated. 
 

4. Google  DeepMinds  agent,  which  can  play  Atari  (a  classic  gaming  console)  games  using  only  pixel  
data  from  the  screen.  This implementation involves extracting features from raw input i.e.  Screen frames.  
It  uses  convolutional  neural  networks  to  learn  successful  control  policies  from  raw  video  data  in  
complex  Reinforcement  Learning  environments.  The  network  is  trained  with  a  variant  of  the  Q-
learning  algorithm. 
 

III. PROPOSED ALGORITHM 
 
The use of genetic programming is proposed.  A general evolutionary algorithm works as follows – 
 

1. A  population  of  genetic  encodings  of  neural  networks  is  evolved  in  order  to  find  a  network  that  
solves  the  given  task.  

2.  Each  encoding  in  the  population  (a  genotype)  is  chosen  in  turn  and  decoded  into  the  corresponding  
neural  network  (a  phenotype). 

3.  This  network  is  then  employed  in  the  task,  and  its  performance  over  time  measured,  obtaining  a  
fitness  value  for  the  corresponding  genotype.  

4.  After  all  members  of  the  population  have  been  evaluated  in  this  manner,  genetic  operators  are  used  
to  create  the  next  generation  of  the  population.  

5.  Those  encodings  with  the  highest  fitness  are  mutated  and  crossed  over  with  each  other,  and  the  
resulting offspring  replaces  the  genotypes  with  the  lowest  fitness  in  the  population.  

6.  The  process  therefore  constitutes  an  intelligent  parallel  search  towards  better  genotypes,  and  continues  
until  a  network  with  a  sufficiently  high  fitness  is  found. 

7. For  running  the  games,  Bizhawk  open-source  emulator  is  used  which  runs  on  a  Windows  machine. 
Bizhawk  has  support  for  LUA  Scripting,  that  allows  to  observe  game  state  and  send  control  signals  
to  it  while  the  game  is  running. 

 
The system is functionally divided into 3 major components. These are as follows – 
 
1)   Input Extraction.  
Here  we  read  the  RAM  memory  of  the  game  and  extract  game  details  like  score.  The  environment  of  game  
is  represented  as  a  simple  integer  array  with  different  values  for  different  types  of  objects.  For  example,  0  
for  empty  space,  1  for  wall,  -1  for  enemies  and  so  on.  This  input  array  is  sent  to  the  other  modules  and  the  
neural  networks. 
 
2)   Genetic Evaluation. 
Here,  the  genetic  algorithm,  as    described  earlier,  is  used  to  evaluate  the  neural  network.  The  final  aim  being  
the  network  being  able  to  finish  the  current  level  of  game. 
Initially  a  pool  of  around  250  to  300  networks  are   initialized  in  the  form  of  genome,  an  alternate  
representation  of  neural  networks  on  which  genetic  algorithms  can  operate.  Then  after  one  round  of  mutation  
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and  cross-reproduction  operation  on  the  pool,  each  genome  is  converted  to  its  corresponding  neural  net  and  
evaluated.  The resultant score is noted as fitness of that genome.  
After  entire  pool  undergoes  this  process,  the  genetic  algorithms  operate  on  it  again. 
This keeps on going until the current   level is successfully completed. 
 
3)  Neural Network Generation and Evaluation. 
As  mentioned  in  the  previous  section,  genetic  algorithms  operate  on  genomic  representations  of  neural  
networks.  This  component  has  modules  to  convert  genotypes  to  corresponding  neural  networks,  as  well  as  to  
run  it  against  the  game  level. 
 

IV. PSEUDO CODE 
 
The main program’s flow of control is as follows- 

1) Define buttons as per the game. 
2) Define size of input to the agent. 
3) Define total population of species in genetic programming and other related parameters. 
4) Define timeout constant. 
5) Define maximum number of nodes allowed in neural network. 
6) Initialize pool of species if pool is nil. 

6.1) Perform initialization. 
 6.1.1) Reset progress parameter. 
 6.2.2) Set timeout value. 
 6.2.3) Save state of current pool. 
 6.2.4) Generate NN from current genome of pool and evaluate the genome fitness. 
 6.2.5) Set joy pad controls as per output of network. 

 
7) Load/Reload GUI with values of progress, maximum progress and current genome, species value. 
8) Display network if corresponding button pressed. 
9) Generate neural network from current genome of pool and evaluate the genome fitness. 
10) Get current position/state of player. 
11) If position/state improved from previous value, update the max progress attained value as well as reset timer. 
12) Reduce timer countdown. 
13) If time out –  

13.1) Evaluate new fitness of species. 
13.2) If new fitness larger than previous max fitness of pool, set max fitness as fitness of this genome.  
13.3) Go to next genome. 
13.4) Reinitialize. 

14) Update GUI 
15) Increment currentFrame parameter of pool. 
16) Call emulator for next frame of game. 
17) Repeat from step 7. 

 
 

V. RESULTS 
 

The  current  implementations  were  successful  on  levels  of  two  games,  Super  Mario  World,  which  is  a  2-D 
Running  and  Jumping  game  for  avoiding  obstacles  to  reach  the goal,  and  Mario  Kart,  a  Racing  game.  The 
rules of any of these games   were not provided beforehand. 
For  Super  Mario  World,  the  training  time  was  around  5  hours  and  level  was  finished  in  15  generations.  
Similarly, for Mario Kart, the player won in 13 generations.  It  was  also  observed  that  adding  opponents  reduced  
the  learning  time  in  Mario  Kart. 
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Figure 1: A snapshot of   the agent playing Mario Kart. 
 
In the Figure 1, we see the GUI of agent including the buttons to load/store state of training, play/pause the training and 
the overlay of information of current generation and species over game screen. The agent is run against Super Mario 
Kart in above screenshot, where it can be seen it has completed the track. 

 

 
Figure 2: A  snapshot  of   the  agent  playing  Mario  Kart, along  with  the  feature  extractor  working,  mapping  

states  with  actions. 
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In figure 2, the screenshot is shown of the agent in action during the game of Super Mario Kart. The image below game 
screen is the representation of the input grid to neural network as well as the neural network, with its hidden and output 
layers, in action. This network representation can be shown or hidden by checking or unchecking the ‘Show Map’ 
button of GUI. 
 

 
 

 
Figure 3: A snapshot of the agent playing Mario Super World, along with its feature extractor working, mapping states 

with actions and the Bizhawk emulator working in the background. 
 
The above Figure 3 shows screenshot taken while the agent plays Super Mario World game. The generation and 
species of current network is visible. Also Mario is seen jumping and avoiding enemies and covering distance of 
around 1200. This shows the gradual progress of Mario. 
 

VI. CONCLUSION AND FUTURE WORK 
 
Thusthe implementation  of  a  general  video  game  player  is  possible  and  efficient  using  genetic  algorithms  to  
train  neural  networks.  Two  games  belonging  to  different  categories  were  successfully  played  and  won  by  the  
agent.  Genetic  algorithms  thus  prove  useful  for  intelligent  agents  to  learn  to  make  correct  decisions  in  the  
game  world.  The  statistics  also  indicate  that  in  some  cases,  the  agent  outplays  an  average    human  
performance  by  a  considerable  margin  in the  time  needed  to  finish  the  level.  The  future  of  these  trainable  
software  agents  is  in  the  real  world  problem  solving  opportunities.  E.g.  A self-driving car. 
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