

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311048 10669

Unified Framework for Handling Different

Types of Top-K Queries
Saxin Merona V V

1
, Soumya Mathew

2

M.Tech Student, Dept. of CSE, VJCET, Mahatma Gandhi University, Vazhakulam, Kerala, India
1

Assistant Professor, Dept. of CSE, VJCET, Mahatma Gandhi University, Vazhakulam, Kerala, India
2

ABSTRACT: In this paper we present a unified framework which can handle different types of queries. The function

used for handle queries is called scoring function. Scoring function used to compute the score of a pair of objects, such

as score is the absolute difference between the pairs. In the case of top-k queries the scoring function returns top-k

objects with the smallest scores. Here we are defining two types of queries that are top-k pairs queries and top-k groups

queries. We present score based method, threshold algorithm and detailed theoretical analysis that demonstrates that the

expected performance of our proposed algorithms. We also demonstrate that our framework can handle multivalued

top-k pairs queries, multivalued top-k group queries and exclusive top-k pairs queries. We conduct extensive

experiments to demonstrate the efficiency of our proposed approach.

KEYWORDS: Exclusive objects, multivalued objects, top-k group queries, top-k pairs queries

I. INTRODUCTION

 Information systems of different types use various techniques to rank query answers. In many application domains,

end-users are more interested in (top-k) query answers in the potentially huge answer space. Different emerging

applications want efficient support for top-k queries. To identify the top-k objects is scoring all objects based on some

scoring function. An object score acts as a valuation for that object according to its characteristics. Data objects are

usually evaluated by multiple scoring predicates that contribute to the total object score. A scoring function is therefore

usually defined as an aggregation over partial scores. Mainly the scoring function is taken as the difference between the

objects.

 Our framework can handle different types top-k queries such pairs queries and group queries. The pairs queries

which retrieve the results as in the form of object pairs. But in the case of group queries it retrieves the values in the

form of group of objects. The top-k objects which retrieved based on the distance between objects. In our framework

pairs queries based on source based method [11]. Source based method is same as internal source algorithm [8]. Our

framework supports chromatic and non-chromatic pairs queries. Chromatic queries depend on the color. For example, a

state consist a lot of cities. Each city in the state has same color. Chromatic queries retrieve the results based on color.

Chromatic queries are two types such as homochromatic and heterochromatic. Homochromatic pairs queries retrieve

the pair of objects which having the same color. In heterochromatic pairs queries, retrieve the pair of objects having

different colors. But in non-chromatic queries which does not depend on the color.

 Pairs queries can handle multivalued and exclusive pairs. Multi-valued pairs mean the objects which has multiple

instances [12]. For example, a state consists of many cities. Here we are considering population as an attribute. Because

each city has different population. The different populations are the multiple instances. So we can say that state is a

multivalued object. Exclusive pairs [13] that object pair which satisfies a condition the pair consider as exclusive. The

pair objects will never see in other pairs.

The group queries [14] which is another extension of top-k queries. Group queries are contains group of objects.

Group queries are little different than pairs queries. It retrieves the object groups based on group count. Group count is

set default as three. For example, if we need to find top-k locations closest in distance to three other locations such that

the total distances is minimum. The three locations changes according to query. Group queries are also chromatic and

non-chromatic. Theses are same as of pairs queries. In the group queries object groups contains the same or different

colors of objects. The group queries also can handle multivalued objects.
 We summarize our contributions in this paper.

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311048 10670

 We first propose a unified framework for a broad class of top-k pairs queries. Here we define the top-k pairs

queries on multi-valued objects and top-k pairs to answer exclusive pairs objects. Here we propose an

algorithm for exclusive pairs.

 This paper is an extended version of [14] and we make the following additional contributions in this

version.

 We extend the unified framework for a broad class of top-k group queries including k-closest group queries, k

group queries and chromatic variants.

 We define the top-k group queries on multi-valued objects and present efficient techniques based on non-trivial

lower bounds.

 The extensive experimental study demonstrates a significant improvement over the pairs queries. For generic

top-k group queries, a comparison with the top-k pairs queries demonstrates the improvement.

II. RELATED WORK

 To increase the efficiency of unified framework we need a good method. So here we referred a lot papers to find

better method and another type of top-k query. Here we get different methods such as skyband based [3] [13], view

based [10] [11], graph based [4] and source based [8] [14].

 Top-k monitoring and skyband monitoring algorithm [2] introduced by Kyriakos Mouratidis, Spiridon Bakiras and

Dimitris Papadias. Here it defines the method to handle top-k queries. But these algorithms are very complicated and

expensive. So we refer dominant graph [4] introduced Lei Zou and Lei Chen, it shows another of graph view. It is very

complicated to build. If we want to find the query results as by keyword search we refer the paper [7] introduced by

Jianhua Feng, Guoliang Li, and Jianyong Wang. But this also cannot handle the unified framework. In the case of

spatial queries defined in [5] introduced by Joao B. Rocha-Junior, Akrivi Vlachou, Christos Doulkeridis, and Kjetil

Norvag. Unified framework handle top k queries using internal and external memory algorithm [8] introduced by

Muhammad Aamir Cheema, Xuemin Lin, Haixun Wang, Jianmin Wang, and Wenjie Zhang. This is good paper to

handle the unified framework. Source based algorithm is easy to handle.AHBA and AMSA used to top-K dominating

queries [9] introduced by G. Sandhya and S. Kousalya Devi. These methods are very difficult to handle. It cannot give

the efficiency for a unified framework. In the case of view based method we studied LPTA and LPTA+ used to handle

top-k query answering using Cached Views[10] introduced by Min Xie, Laks V.S. Lakshmanan and Peter T. Wood.

Another method for view as view based approach used to handle all top-k [11]introduced by Shen Ge, Leong Hou U,

Nikos Mamoulis, and David W. Cheung. If cannot get all the answers for a query we refer Handle why-not questions

on top-K queries [12] introduced by Zhian He and Eric Lo. It helps to increase the speed of the framework. To study

more about the source based method use paper [10] introduced by Zhitao Shen, Muhammad Aamir Cheema, Xuemin

Lin, Wenjie Zhang, and Haixun Wang. Here it defined the top-k objects and top-k pairs queries. Another is unified

framework for answering closest pairs and variants [14]. This paper provides the base of the paper and gets the method.

Here we use threshold algorithm to get top-k objects. To study about the extensions such as multi-valued, exclusive and

group queries we refer [6] [3] [1]. In the [6] which defines the features of multi-valued objects. Multi-valued objects

have multiple instances. In [3] defined about exclusive and [1] defines about the group queries based on KNN. Top-k

queries and their variants are mainly depend on the source based methods and threshold algorithm. It defined in section

3.

III. PROPOSED ALGORITHM

 This section focuses on the Top-k Queries. Section A, B, C describes top-k pairs queries, Top-k pairs queries on

multivalued objects and Top-k pairs on exclusive objects. Section D describes top-k group queries and section E

presents top-k group queries on multivalued objects.

A. Top-K Pairs Queries:

 Top-k pairs query problems solved by applying the existing work on the top-k queries. The algorithms assume that

the sources can report the elements in a sorted order. So if we need to create and maintain the sources then need to

develop efficient techniques.

 In top-k pairs queries which retrieve the objects in the form of pairs. Each pair is retrieved based on the source based

algorithm. Here we are looking in to the scoring function such as distance between the pairs.

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311048 10671

The framework which shown in the Fig. 1 is the main work of the Top-k pairs queries. Here we added a technique

called skyband table. Its usage is very important in the case of top-k queries. Its working is described as: Initially

create skyband table in database with query and result fields. If a user wants to give a query, then first he should check

whether the query is already in skyband table or not. If it is available then select the query from skyband table. The data

will be retrieved very fast. Otherwise whole process will be take place and then saved into the database.

Mainly top-k pairs queries consist of three steps. Initially we need to create the skyband table then create and

maintain the source and at last find the top-k pairs using threshold algorithm. These are defined in [14]. Fig. 2 defines

the threshold algorithm. It is the main technique to get top-k pairs.

Fig.1. Framework Fig. 2. Algorithm 1

B. Top-k Pairs on Multivalued Objects

In this section, we formally define top-k pairs queries on multi-valued objects and propose efficient query

processing techniques. Mainly top-k pairs queries on multivalued objects consist of three steps. Initially we need to

create the skyband table then create and maintain the source and at last find the top-k pairs using threshold algorithm.

In the case of computation of top-k pairs we need to find),]([VUiSCORE . Creation of skyband table is already

defined above. The whole technique and algorithm referred in [14].

C. Top-k Pairs on Exclusive Objects

 Here we define exclusive pairs (ECP). A real-life application of the ECP query is the car parking assignment

problem, where each car driver requests for a parking slot from the set B of available slots. The ECP searches for the

one-to-one assignment of cars to parking spaces, such that the sum/average of travel distances is minimized. It is more

reasonable to assign each car c to A to the parking space p to B that may not be taken by another driver c0. So the car

assignment problem handled by ETP.

 Mainly top-k pairs queries consist of three steps. Initially we need to create the skyband table then create and

maintain the source and at last find the top-k pairs using threshold algorithm. These are already defined in [14]. Here

we add algorithm 2 (Fig. 3) and 3 (Fig. 4) to know how the exclusive top-k pairs will work. The threshold algorithm is

same as algorithm 1 (Fig. 2).

D. Top-k Pairs on Exclusive Objects

 In top-k group query that contains d number of local scoring functions. If we get a query first of all we need to find

out the scores of the group elements from different sources. Sources are always sorted. The maintenance of d sources is

shown in Fig. 3.2 such that each source
iS incrementally returns the group with the best score according to the ith local

scoring function. To retrieve the top-k groups of combining ranked or sorted inputs from sources use the top-k

algorithms mainly threshold algorithm.

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311048 10672

Fig. 3. Algorithm 3 Fig. 4. Algorithm 2

 Top-k group query problems solved by applying the existing work on the top-k pairs queries. The algorithms assume

that the sources can report the elements in a sorted order. So if we need to create and maintain the sources then need to

develop efficient techniques. The technique which used here will give the source with group of objects in a sorted

order. A straightforward solution to create a source
iS is to sort all possible group objects according to their local

scores on the ith attribute.

 In the top-k group queries they have an opportunity to select queries directly from skyband table which shown in

Fig. 5. The skyband table which stores the all the top-k groups queries as well as the results. So it reduces the time of

execution. We can directly retrieve the values from table. Mainly top-k group queries consist of three steps. Initially we

need to create the skyband table then create and maintain the source and at last find the top-k group using threshold

algorithm. The creation of skyband table is defined above.

Fig. 5. Framework Fig. 6. Algorithm 4

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311048 10673

Step 1: Maintaining the Sources:

 Initially all the objects are sorted of their attribute values in ascending order such that
Nooo  ...21

. For any group

),,(xwv ooo , the host is vo which the first object in the group and the guests of the group),(xw oo are the second and

third object. A group),,(xwv ooo means the objects),(xw oo are the guests to host vo . Every object vo can host only

the objects that are on the right side of
vo in the sorted list

Nooo  ...21
. For chromatic queries, the guest objects in

the group that are on the right side of vo that meet the color requirement. In the case of vo which has two guests such

as wo and
xo . Here we can say),(xw oo are the best guests of

vo than),('' xw oo if),,(xwv ooos <),,('' xwv ooos . The

objects),(xw oo are called the best guests of a host vo if for every other guest),(xw oo of the host
vo ,),,(xwv ooos <

),,('' xwv ooos . We can say that the group),,(xwv ooo has been reported as best group, if object
vo has hosted the

object
wo and

xo .

 Here we use the Algorithm 4 (Fig. 6) which presents the details of creating and maintaining a source. Initially, read

and then sort all the objects in ascending order of their attribute values. For each object
vo , if),(xw oo are the best guests

of
vo then created a group),,(xwv ooo if the group number is limited to 3. At last all these groups are inserted to the

heap. Whenever a request for the next best group arrives, the source retrieves the top group),,(xwv ooo from the heap

and reports it to the main algorithm. The next best group is),,(yxv ooo is inserted to the heap where),(yx oo are the

next best guests of
vo . At any stage during the execution, the next best guest of vo is the best guest among the guests of

vo which has not been hosted by
vo .

 Example: Consider the example of Fig.7 which shows six objects
1o to

6o which are sorted on their attribute values.

Attribute values are contains inside the circles. Here we assume the scoring function as absolute difference. A group

),,(xwv ooos is shown by a directed edge from the host
vo to the guests),(xw oo . Initially, for each object, this

inserted in the heap as a group with its best guests. If the scoring function is absolute difference, then for each object

the best guests are its right adjacent objects. Fig. 3.3 shows the groups that are inserted in the heap. Here we consider

the best group as),,(543 ooo because it has smallest score. Here the score of the group is 7. After retrieving that group,

the algorithm determines that the next best guest of 3o and inserts),,(653 ooo in the heap with score 14 (see Fig.7).

 Adjacent Objects: The first and second objects),(tu oo are on the left side of
vo in the sorted list is the left adjacent

object of
vo such that the group),,(tuv ooo satisfies the color requirement. Next object of the group will be left

adjacent of to that is so satisfies the color requirement. So the group is),,(stv ooo . If the group contains the

homochromatic group which contains the objects with same color. If it is heterochromatic the group contains different

color objects, where the host and second guest have same color.

 The first and second objects),(xw oo are on the right side of
vo in the sorted list

Nooo  ...21
 is the right adjacent

object of
vo such that the group),,(xwv ooo satisfies the color requirement. Next object of the group will be right

adjacent of
xo that is

yo satisfies the color requirement. So the group is),,(yxv ooo . In the Fig. 8 which shows some

objects are),,(542 ooo and some are white),,(631 ooo . Fig. 7(a), 7(b) and 7(c) show the adjacent objects for non-

chromatic queries, heterochromatic queries and homochromatic queries, respectively. The broken lines have shown the

adjacent objects. An arrow from an object
uo to

vo indicate that
uo is the adjacent object of

vo in that direction.

Step 2: Finding the Best Guest for Each Object
vo :

 In the case of right increasing functions, the score is),,(xwv ooos <),,('' xwv ooos . Hence, for any object
vo their right

adjacent objects are its best guest. For example, in Fig. 3.3(c),
3o and 6o are the best guests of

1o if the scoring

function is right increasing function.

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311048 10674

 Fig. 7 Illustration of Algorithm Fig. 8. (a) non-chromatic (b) heterochromatic (c) homochromatic

 In the case of right decreasing functions, for any object
vo ,),(xw oo are the best guests because these are the right

most objects such that the group),,(xwv ooo meets the color requirement. In the case of non-chromatic queries, the

best guest of any object
vo is

No . For example, in Fig. 8 (a) the best guest of every object
6o is if the scoring function is

a right decreasing function. For the heterochromatic queries, in each group contains different objects with different

colors. Such as, if
No has a color different than

vo then
No is the best guest of

vo . In the case of left adjacent objects,

No is the best left guest of
vo because it has the color different than

vo . In the Fig. 8(b), 2o and 3o are the best guests

of
1o whereas

4o and
6o are the best guests of

2o .

 For the homochromatic queries, initially we scan the sorted list
Nooo  ...21
 once and maintain the right most

object of each color. For each object
vo , its best guest is the right most object of the same color. In the example of Fig.

8(c), 3o and 6o are the best guests of
1o whereas

4o and
5o are the best guests of

2o .

Step 3: Finding next best guest of any object
vo :

 Let
),(xw oo are the current best guests of the object

vo . We need to find the next best guest of
vo . Here describe how to

find the next best guests for the right increasing functions and the right decreasing functions. For non-chromatic and

homochromatic queries, the next best guest of
vo are

'wo and
'xo which are the right adjacent object of

wo and
xo . In the

example of Fig. 8(c), let
)63 ,(oo be the current guests of

1o . The next best guests of
1o are

6o and
8o which are the right

adjacent objects of
3o .

 For the heterochromatic queries, the next best guests are
'wo and

'xo of
vo if

'wo has a color different than
'xo .

Consider the example of Fig. 8(b) and assume that the current best guests of
1o are

2o and
3o . When),(32,1 ooo is

reported, the algorithm checks
3o to see if it is the next best guest of

1o . Since
1o and

3o have the same color, the next

best guest of
1o is

4o which is the right adjacent object of
3o . The next best group is),(64,1 ooo .

Step 4: Finding the adjacent objects:

 The procedure of finding adjacent objects is not needed for non-chromatic queries. So, it used in the case of

heterochromatic queries. So initially we need to set the right adjacent object of
No to NULL. Then we scan the sorted

list of the objects from right to left. When
'wo and

'xo is set as the right adjacent object of
vo if

'wo has a different color

than
vo and

'xo has a different color than
'wo . Consider the example of Fig. 8(b), the right adjacent object of

6o is set to

NULL. The right adjacent objects of
3o is

4o and
6o because they have different colors. The right adjacent object of

3o

is not
5o because they have same color. So, the right adjacent object of

5o is set as the right adjacent object of
3o . The

left adjacent objects can be set similarly by scanning the list from left to right.

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311048 10675

For the homochromatic queries, here scan the list from right to left, maintain the last seen object of each color. The

right adjacent object for any object
vo , is the last seen object of the same color. The left adjacent objects are set

similarly by scanning the list from left to right.

Step 5: Query processing algorithm

 Here we use threshold algorithm to combine the scores of a group from different sources and return the top-k groups.

The threshold algorithm supports the random accesses. That is if return a group from a source
iS threshold algorithm

needs to find out its score on every other attribute. All the objects are stored in memory. Initially, we return a pair

),,(xwv ooo from a source, then find the objects attribute values
vo ,

wo and
xo from the object table and then compute the

score of the pair),,(xwv ooo on every other attribute. Algorithm 5 (Fig. 9) shows the computation of top-k groups.

Fig. 9 Algorithm 5 Fig. 10 Critical and terminal instances

E. Top-k Pairs on Multivalued Objects

 In the previous section and [14] we already studied about multivalued objects. Multivalued objects have many

instances. For example a state has a lot cities and each city has different population. So states multiple instances are

cities. Each city is evaluated with some attributes such as coordinates, population etc. Here discussing about top-k

groups on multivalued objects. The top-k groups retrieve the top k multivalued object groups. It is different than top-k

pairs. Here we can get the object groups based on the group number.

 In this section, we formally define top-k group queries on multi-valued objects and propose efficient query

processing techniques. Mainly top-k group queries on multivalued objects consist of three steps. Initially we need to

create the skyband table then create and maintain the source and at last find the top-k pairs using threshold algorithm.

In the case of computation of top-k group we need to find),,]([WVUiSCORE
. Creation of skyband table is already

defined above.

 The local score of a group of instances is g = (u, v, w) in ith dimension which is denoted as g.score[i] that is

g.score[i] = |u[i]-v[i]+ u[i]-w[i] |. Here we using g.score[i] to compute the ith local ϕ-quantile score of a group of

instances of multivalued object (U,V,W) and is denoted as),,]([WVUiS
. To compute top-k groups of multivalued

objects, first of all we need to divide the problem into d one-dimensional problems and then apply the algorithm. To

achieve this, ensures that the global ϕ-quantile score),,(WVUSCORE
of a pair (U, V,W) can be lower bounded by using

its d/ -quantile local scores),,]([/ WVUiS d
in each of d dimensions. We use),,]([_ WVUiSCORELB 

 which denote a

lower bound on),,]([WVUiSCORE
and),,]([_ WVUiSCORELB 

 to denote a lower bound on),,]([WVUiS
.

 Framework: The basis of creation and maintenance d sources as 1) each source
iS incrementally returns the group

(U,V,W) with the smallest and),,]([_ WVUiSCORELB 
 2)),,]([_ WVUiSCORELB 

can be computed for each given group of

multivalued objects (U,V,W).

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311048 10676

Step 1: Creating and maintaining sources

In this section, we describe how to create and maintain the sources. Initially we need to sort the instances of all

multivalued objects to create the sources.

 Let L denote the list of every group),,(kji wvu where
iu in U,

jv in V and
kw in W. Let L’ € L be the set of

groups such that the total weight of the group of instances in L’ is at least 1- d/ . Let p € L' be a group with the

smallest ith local score in L’.

Here we define the construction of L’ and),,]([_ WVUiSCORELB 
, using these instances.

(1)Terminal instance: For a multivalued object U, its terminal instance in ith dimension is the instance with the largest

value in ith dimension and is denoted as
tu .

(2)Critical instance: Let)....(1 muu denote the instances of a multivalued object U sorted in ascending order of their

values in ith dimension. The critical instance of U is an instance
cu such that  


m

cj j duw /1)( and)(
1 

m

cj juw < 1-

d/ .

 Fig. 10 shows two multivalued objects U and V with seven and six instances, respectively. The weight of each

instance
iu € U is 0.14 and the weight of each

iv € V is 0.16.
7u and

6v are the terminal instances of U and V which are

shown as circles having thick boundaries. Assuming 1- d/ =0.6, the critical instances of U and V are
2u and

3v

respectively. Algorithm 6 presents the details of creation, maintenance and computation of group queries on

multivalued objects.

 Fig.7 in [14] shows the example, where five multi-valued objects U, V, W, X and Y are shown. The terminal

instances of the objects are shown in that Fig.

 In the sorting of multivalued objects, initially we need to sort the instances of each object in ascending order of their

values in ith dimension. The terminal and critical instances of each object are identified by shown above. Here we get

two sorted lists such as

1) Terminal list contains the terminal instances of the objects sorted according to their values

2) Critical list contains the critical instances sorted on their values.

 Here we define how to find the best guest of U. Initially an object U serves as a host to an objects V and W only if

tu ≤
tv and

tu ≤
tw . In Fig. 7 in [14], U will be the host of the objects V, X and Y. We consider V as best guest of U if it

has minimum),]([_ VUiSCORELB 
= max (0,

cv -
tu). The objects has minimum

cv that are called the eligible guests

of U. Such that if consider V and W as the best guests of U which has minimum
cv and

cw . Here we consider the group

(U, V, W) because it has minimum score. The score get by),,]([_ WVUiSCORELB 
=max (0,

cv -
tu) + max (0,

cw -

tu). Fig. 7 in [14] shows the best guest object for each object by drawing an arrow from the host object to the guest

object. The source is initialized then inserts these four pairs to heap. Here V and X be the current best guests of U in a

group. The next best guests of U can be finding by binary search. In the case when V, X was obtained using a binary

search, then an object (V’, X’) are the next guests where (X’, Y’) is the objects that has critical instance
cx' ,

cy' adjacent

to
cv in the sorted list.

 The algorithm 6 (Fig. 11) accesses each source in a round-robin fashion. A group (U, V, W) returned by a source
iS

is possibly among the top-k groups. So we need to compute its ϕ-quantile global score and update the list of top-k

groups accordingly (lines 7 and 8).),,(WVUSCORE
 is computed using Algorithm 6. Here we do not need to compute

),,(WVUSCORE
 if (U, V, W) has already seen in any other source (line 4). Otherwise need to compute the lower bound

),,(_ WVUSCORELB 
 by doing random access on each other source. If),,(_ WVUSCORELB 

 is larger than the score of k-

th best group seen then (U, V, W) cannot be among the top-k groups. Hence, the computation),,(WVUSCORE
 is not

required (line 6). The algorithm stops when the best possible score of any unseen group (i.e., threshold) cannot be

smaller than the score of k-th best group. Let iL denote the lower bound local score of the last group accessed from the

source
iS (line 3). Clearly, the best possible ϕ-quantile global score of any unseen group is at least t=f (L [1]... L [d]).

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311048 10677

Therefore, if t is not smaller than the score of k-th best group, the algorithm terminates by reporting top-k groups (lines

9 to 11).

 Fig. 11 Algorithm 6 Fig. 10 Algorithm 7

Step 2: Compute),,(WVUSCORE

 Here we describe how to compute the score),,(WVUSCORE
 of a group of object (U, V, W) requested at line 7 of

Algorithm 6 (Fig. 11). Here we describe Algorithm 6 shows the computation of),,(WVUSCORE
. Here the algorithm

maintains the sources with groups of instances according to their local scores. The sources allow sorted and random

accesses on groups of multi-valued objects of a given (U, V, W). The algorithm initializes an empty list L that will

maintain the accessed groups in ascending order of their global scores (i.e., g.score).

 Initially set p.score=0 and g.score=0. Here p.score means that the score of each pair in the multivalued pair such as

(U, V) from (U, V, W) and g.score means the total score of group. The algorithm 7 (Fig. 12) proceeds with doing sorted

accesses on each source
iS in a round robin fashion (line 2). For each accessed group (line 3) from a source iS . If g

was never accessed before, its score g.score is computed by doing random accesses on each other source (line 5). First

of all, need select the pair (U, V) from (U, V, W) (line 6). Then select each pair from the (U, V) and compute the score

from all the sources
iS (line 7-8). Score will be the aggregate of all sources (line 9). Each time p.score will be modified

as p.score+score (line 10). This will be repeated for all the pairs in a group. Example next pair will be (U, W) (line 12-

13). Each time the pair number is increasing (line 11).If the group count is 4 we get p.score by three times of

p.score. For example (U, V, W, Z) is a group we get the p.score from (U, V), (U, W) and (U, Z). At last we find the

p.score by p.score divided with total no of pairs that is number of i (line 14). Then we can find totalscore from add

totalscore with p.score (line 15). Then return the g.score (line 16).

IV. SIMULATION RESULTS

 We are done the experiment with some real data. Here we check whether how much time to take to get the results. It

based on K values as well as no of objects. The parameters are shown in Table 1. Here we use a skyband table which

helps to get the result fast. Skyband table contains the queries which we used for retrieving the results. So if user need

same query, need to check the query in skyband table. If that available select it from the table. It will help to get the

result quickly. In each two weeks the skyband table removes the queries that are expired. It has a big benefit that is it

reduces the time.

Parameter Range

K 1,5,10,15,20,25,30,35,40,45,50

No of objects 1000,3000,5000,7000,9000,11000,13000,15000,17000,19000

Table 1. Parameters

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311048 10678

A. Scoring Functions

 Real data: The real data set consists of location data having 30000 location points from different cities in USA. Each

location corresponds to the location of a city which has four attributes: two coordinates, population and state which

contains the city. The cities that are in the same town are assigned the same color. We run several heterochromatic and

homochromatic queries each involving two to four preferences (i.e., attributes).

B. Top-k Pair Queries and Top-k Group Queries

 In the top-k pair queries we get the results as pairs of cities. In the case of group queries, we will get the groups of

cities based on group count. It will be 3, 4, etc. The group count will be decided by user. If the city considers the same

state it will give result of homochromatic queries. If the cities in different state it will be heterochromatic query. In the

case of population, homo and hetero chromatic based on the range of population. If the range changes it will be have

different colors.

 For example, the query used to retrieve top 4 pairs where population greater than 3000. Here population greater than

3000, those cities has same color. So we retrieve such pairs which have same color. That will be homochromatic. In

the case of heterochromatic the cities are in different states. Fig. 13 shows K versus Execution Time values and Fig. 14

shows No of Objects versus Execution Time values. The time will be in milliseconds.

Fig.13. K Versus Time Values Fig. 14. No of Objects Versus Execution Time Values

Fig. 15. K Vs Time Fig. 16. No of Objects Vs Execution Time

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311048 10679

 According to the table we can see that execution time is reducing in the case of group queries. Fig. 15 shows the

effect of increasing number of K on the queries issued on real data sets and the Fig. 16 shows the effect of increasing

number of objects on the queries issued on real data sets. After the evaluation we get the result as, in pair queries which

show that it will take more time than group queries. Because the group queries which has group number is low. The

default no of group count is 3. Example, if we take 5 cities, it has mainly 10 pairs and 5 groups. So the execution will

be reduced. So here we can say that the group queries better than pairs queries.

V. CONCLUSION AND FUTURE WORK

 The unified framework is used to handle different types of queries. Mainly such a framework needs a method and

algorithm. They have a lot of methods are used. So we need to find out the best method and best algorithm. Used

methods are view based, sky band based, graph based and source based. So we take the best method is the combination

of source and skyband based. Because it create and maintain the source based on attributes in the query. It is good

method and easy to implement. These two methods will be the best method to handle the framework. All the method

mainly use threshold algorithm for calculate the accurate results. So use threshold algorithm as best algorithm.

 After using the method and algorithm we can identify that it is a good method to handle different types of queries.

Mainly it uses in pairs and group queries. The pairs queries are single valued, multivalued and exclusive. The group

queries are single valued and multivalued. The group queries are retrieve the result as group of objects depending on

the group count. The pairs queries retrieve the result as pair of objects. In the experiment get the result as group queries

are better than pairs queries. Because it takes less execution time compared to pairs queries.

REFERENCES

1. Dimitris Papadias,Qiongmao Shen,Yufei Taos Kyriakos Mouratidis, ‘Group Nearest Neighbour Queries’, Proc. IEEE 20th Intl Conf. Data

Eng. (ICDE), pp.9217, April 2004.

2. K. Mouratidis, S. Bakiras, and D. Papadias, ‘Continuous monitoring of top-k queries over sliding windows’, Proc. ACM SIGMOD Intl
Conf. Management of Data, PAGES 636-645, June 2006.

3. L.H.U.N., Mamoulis, and M.L. Yiu, ‘Continuous Monitoring of Exclusive Closest Pairs’, Proc. 10th Intl Symp. Advances in Spatial and

Temporal Databases (SSTD), 2007.
4. L. Zou and L. Chen, ‘Dominant graph: An efficient indexing structure to answer top-k queries’, in Proc. IEEE ICDE, Washington, DC,

USA, 2008, pp. 536545.

5. Joao B. Rocha-Junior, Akrivi Vlachou, Christos Doulkeridis, and Kjetil Norv, ‘efficient Processing of Top-k Spatial Preference Queries’,
Proc. ACM VLDB, vol. 4, no.2, November 2010.

6. W. Zhang, X. Lin, M.A. Cheema, Y. Zhang, and W. Wang, ‘Quantile- Based KNN over Multi-Valued Objects’, Proc. IEEE 26th Intl
Conf. Data Eng. (ICDE), pp. 16-27, 2010.

7. Jianhua Feng, Guoliang Li, and Jianyong Wang, ‘Finding Top-k Answers in Keyword Search over Relational Databases Using Tuple

Units’, IEEE Transactions on Knowledge and Data Engineering, Vol. 23,No. 112, December 2011.
8. M.A. Cheema, X. Lin, H. Wang, J. Wang, and W. Zhang, ‘A Unified Approach for Computing Top-K Pairs in Multidimensional Space’,

Proc. IEEE 27th Intl Conf. Data Eng., pp. 1031-1042, 2011.

9. G. Sandhya and S. Kousalya Devi, “’An Adaptive Sliding Window Based Continuous Top-K Dominating Queries’, in Proc. IEEE ICDE,,
2012.

10. Min Xie, Laks V.S. Lakshmanan and Peter T. Wood, ‘Efficient Top-k Query Answering using Cached Views’, Proc. 16th ACM Conf.

Extending Database Technology, March 2013.
11. Shen Ge, Leong Hou U, Nikos Mamoulis, and David W. Cheung, ‘Efficient All Top-k Computation A Unified Solution for All Top-k,

Reverse Top-k and Top-m Influential Queries’, IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 5, May 2013.

12. Zhian He and Eric Lo, Answering Why-Not Questions on Top-K Queries’, IEEE Trans. Knowledge and Data Engineering, vol. 26, no. 6,
June 2014.

13. Zhitao Shen, Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang, and Haixun Wang, ‘A Generic Framework for Top-K Pairs and

Top-K Objects Queries over Sliding Windows’, IEEE Trans. Knowledge and Data Engineering, preprint,vol. 26, no. 6, June 2014.
14. Muhammad Aamir Cheema, Xuemin Lin, Haixun Wang, Jianmin Wang, and Wenjie Zhang, ‘A Unified Framework for Answering k

Closest Pairs Queries and Variants’, IEEE Trans. Knowledge and Data Engineering, vol. 26, no.11, November 2014.

BIOGRAPHY

Saxin Merona V V is a Mtech Student in the Computer Science And Engineering Department, Viswajyothi College of

Engineering And Technology, Mahatma Gandhi University, Vazhakulam, Kerala, India.

Soumya Mathew is Assistant Professor in the Computer Science and Engineering Department, Viswajyothi College of

Engineering And Technology, Mahatma Gandhi University, Vazhakulam, Kerala, India.

