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ABSTRACT: This paper presents an optimized noise-reduction algorithm for noisy interferometric fringe pattern 

image. We simulated an interferometric fringe pattern image and incorporated different additive type of Gaussian 

noises. Due to inclusion of the noise in the interferogram, the image is disturbed and it is important to retrieve phase 

information from fringes for further process of wavefront error estimation for the adaptive optics applications.  This 

paper reports the faster denoising algorithm of 2D Fourier transform approach with data parallelism using LabVIEW in 

an optimized way. To reduce the data from the interferogram, single dimensional and two dimensional Fourier 

Transform are used for comparison of which is fast and accurate. 
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I.  INTRODUCTION  

 

In Astronomical Instrumentation, the medium is the Earth’s turbulent atmosphere, and the optical signal is the light 

emitted by the star or the body of interest. The atmospheric turbulence can be considered as a random process and can 

be estimated by means of variances and co-variances of local refractive index fluctuations [1]. The turbulence affects 

the image quality at the focal plane of the telescope. Thus, the perfectly plane wave from a star at infinity is aberrated 

before it enters the telescope. The distortion induced by the turbulent atmosphere on the incoming wavefront from the 

stars can thus be corrected which enables the telescope to reach the diffraction-limited image quality, thereby 

improving the resolution of the ground-based telescopes. The real time correcting system is called as Adaptive Optics 

(AO). The fundamental components of an adaptive optical (AO) system are a wavefront sensor to measure the 

distortions in the optical beam, a wavefront corrector to compensate these errors, and an estimation and control 

algorithm to derive the control signals from the distortion measurements.  

 

The most commonly used wavefront sensors are the Shack-Hartmann [2, 3] curvature sensing [4] shearing 

interferometry [5, 6] and Pyramid wavefront sensor [7]. Among the wavefront sensors, the Shack-Hartmann (SH) 

sensor is the most commonly used technique for measurement of turbulence for various applications in atmospheric 

studies and adaptive optics. Shearing interferometry has the important advantages over other wavefront sensors, i.e.  it 

has very high resolution. It requires no reference wavefront for the production of fringes other than the incident 

wavefront itself i.e. Self-referenced measurement and particularly insensitive to environmental vibrations.  

 

Recently some methods based on Lateral shearing interferometry were employed as the wavefront sensor for real 

time atmospheric corrections [8, 9]. One of the major drawbacks of these interferometric techniques is the requirement 

of orthogonal pair of interferograms for wavefront reconstruction but shearing interferometer offers better choice for its 

linearity, better signal processing and added spatial information. For these advantages a simple lateral shearing 

interferometer using Babinet compensators (BC) was described in [10]. The technique was further improved employing 

two crossed BCs [11]. A detailed theory on the use of this PSI device as a wavefront sensor for Adaptive Optics 

applications was provided [12, 13]. It is important to understand the Polarization Shearing Interferometer (PSI) 

theoretically to sense the wavefront errors. For this purpose a simulation of wavefront has been generated and 

incorporated the wavefront errors caused due to atmospheric turbulence with varying noise levels. The theoretical 

simulation helps one to understand the behavior of the fringe patterns in different circumstances. A wavefront sensor 
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measures the distortions across the telescope pupil of the incident beam. To estimate these errors in real time, a suitable 

algorithm has been developed in Lab VIEW platform. We simulated the interferogram without any distortion and with 

distortion using Gaussian noise. Also, a suitable data reduction procedure using Fourier technique of the interferogram 

has been worked out which is giving full information of the errors present in the wavefront within few milliseconds.  

 

1.1 Related Works 

 

First we adopted the algorithm [18], as it proceeds the interferometric image was read row-by-row pixels (one 

dimensional). From this 1D data, the high frequencies were fitted to the Fast Fourier Transform. It retains the frequency 

corresponding to maximum amplitude along with few frequencies on both sides and make rest of the amplitude zero for 

all other frequencies. The high frequency noise was removed keeping only the data signal. After taking the inverse 

Fourier Transform the noise was partially removed. In this method, the simulated interferometric image has been used 

for computing the wavefront error which is time consuming that is main drawback for the algorithm. In adaptive optics 

real-time wavefront correction timing must be within 20 milliseconds. But the existing method to denoise the 

interferometric image has taken about 2000 milliseconds for image size of for 512 X 512 and 1300 milliseconds for 

256 X 256. So for proposed new algorithm these problems are considered and suitable modification has been adopted. 

 

II. INTERFEROGRAM SIMULATIONS USING ZERNIKE POLYNOMIAL 

 

Zernike polynomials are widely used for describing the classical aberrations of an optical system [14]. They have the 

advantage that the low order polynomials are related to the classical aberrations like, spherical aberration, coma and 

astigmatism. Fried [15] used these Zernike polynomials to describe the statistical strength of aberrations produced by 

the atmospheric turbulence. The PSI wavefront sensor measures the wavefront slope. The derivatives of the Zernike 

Polynomials can be written as a linear combination of Zernike polynomial [16]. Hence, the slope information from the 

wavefront sensor can be conveniently expressed as a function of the Zernike polynomials. The basic interferometric 

equation for Zernike and the gradient of the Zernike polynomial is represented by 

∆𝑍𝑗 =  𝛾𝑗 𝑗 ′𝑍𝑗 ′

𝑗 ′

 

                                                                  (2.1) 
where γjj′   are the coefficients of the Zernike expansion of the derivative of the j

th
 Zernike. The matrix γ is called 

Zernike derivative matrix and it is given in Noll, 1976. And the wavefront slope is explicitly written as  

∆𝑊 𝑥, 𝑦 =  𝑎𝑗  𝑠 𝛾𝑥𝑗𝑗 𝑍𝑗
𝑗

+ 𝑡 𝛾𝑦𝑗𝑗 𝑍𝑗
𝑗

 

𝑛

𝑗=1

 

                                                                                                                                                  (2.2) 

Figure 1 shows that the simulation of interferogram using 11 Zernike coefficients which is given in [16]. 
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Figure 1: Simulated PSI interferograms using the Zernike coefficients with only defocus term while all other coefficients is zero 

III. EFFECT OF GAUSSIAN NOISE ON INTERFEROGRAM 

          Gaussian noise is evenly distributed over the signal. This means that each pixel in the noisy image is the 

sum of the true pixel value and a random Gaussian distributed noise value. As the name indicates, this type of noise has 

a Gaussian distribution, which has a bell shaped probability distribution function given by equation 

1 

𝜎 2𝜋
exp −

 𝑥 − 𝜇 2

2𝜎2
   

                                                          (3.1) 

 
Figure 2. Typical Gaussian distribution 

 
Where x represents the gray level, μ is the mean or average of the function and σ is the standard deviation of the 

noise.  Varying sigma we get the distorted interferometric image. 

 

The signal to noise ratio of an interferogram is a quality estimation factor. It is a measure of how strong the signal is 

with respect to the external noise present at the time of observation. The presence of random noise alters the visibility 

and the contrast of the fringes drastically. For visualization and for illustration purposes, a Gaussian noise was 

additionally introduced in the same simulation. The effect of Gaussian noise on PSI images are shown in Figure 2. 

These errors can be evaluated and subtracted from the interferogram. The effect of noise is introduced in the 

interferometric equation as an added Gaussian term in the phase.  
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         (a)                                (b) 

 
     (c)                                          (d) 

Figure 2. Noisy interferogram with Gaussian noise level of 0.3, 0.5, 1 and 1.5 

IV. TIME REDUCTION WITH 2D FAST FOURIER TRANSFORM METHOD 

For experimental purpose to find out time consumption for denoising noisy fringe pattern we used two different 

image sizes (256 X 256, 512 X 512). We have generated wavefront for shearing interferometer based Zernike 

polynomials. We also incorporated wavefront errors caused due to atmospheric turbulence. The simulations of 

Interferometric image are developed using LabVIEW. It is proposed to adopt the 2D Fourier method to bring down the 

total computation time to few milliseconds. The software is developed in such a way that it denoised the interferometric 

image by keeping the time and accuracy as main factors. We used the Fourier transform method which is resistant to 

noise and is highly efficient and very simple to apply. Initially we tried an algorithm using single dimensional data 

(each row by row) for Fast Fourier Transform (FFT) fitting which is time consuming and also the noise was not 

completely removed. We then tried for different filters (low pass and high pass) but Fourier analysis approach has been 

adopted for determination of local phase of the proposed PSI interferogram as it is best suit for the interferogram 

analysis. 
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 In this proposal we adopted the 2D FFT which is giving noise free image with reduced time.  We opted for 2D FFT, 

which computes the discrete Fourier transform (DFT) of the input matrix. This FFT performs a 1D FFT on the rows of 

the input matrix and then performs a 1D FFT on the columns of the output in the preceding step. When FFT is the 

Fourier transform of a 2D real time-domain signal with M rows and N columns, the lower half part of FFT can be 

constructed by the upper half part. The figure 3 a, b shows that the noisy fringe affected by Gaussian noise and its 

denoised image using single Dimensional FFT. The figure 4 a, b shows that the noisy fringe affected by Gaussian noise 

and its denoised image using two dimensional FFT.   

The DFT of an M-by-N matrix is defined as: 

 

𝛾 𝑢, 𝑣 =   𝑥(𝑚, 𝑛)𝑒−𝑗2𝜋𝑚  𝑢 𝑀 

𝑁−1

𝑛=0

𝑀−1

𝑚=0

 𝑒−𝑗2𝜋𝑚  𝑣 𝑛     𝑓𝑜𝑟 𝑢 = 0,1,2… ,𝑀 − 1, 𝑣 = 0,1,2… ,𝑁 − 1                  (4.1) 

Where x is the input matrix and γ is the transform result. The figure 3 shows that the noisy interferogram and denoised 

interferogram using 1D FFT method of existing algorithm [18]. 

 
                                                    (a)                         (b) 

Figure 3. The noisy image (a) and denoised image using single dimensional FFT (b)  

The figure 4 shows that the noisy interferogram and denoised interferogram using 2D FFT method of proposed 

algorithm. 

 
                                                    (a)                         (b) 

Figure 4. The noisy image (a) and denoised image using 2D FFT (b) 
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V. RECONSTRUCTION OF THE DISTORTED WAVEFRONT  

The phase thus recovered is measured with an integral multiple of 2π uncertainties. The process of removing these 

uncertainties is called phase unwrapping. After phase has been completely unwrapped, the data contains the derivatives 

of the original phase of the wavefront. The derivative of the wavefront phase can conveniently be written in terms of 

Zernike polynomials, to estimate the wavefront errors. The Zernike coefficients provide the complete information of 

the wavefront. 

 
A. Wavefront determination from wavefront slope data using Zernike polynomial  

           The aberrated wavefront has to be reconstructed from the wavefront slopes derived from the above method. 

The wavefront aberrations can be well represented by Zernike polynomials. The derivatives of the Zernike polynomials 

can be expressed as a linear combination of Zernike polynomial [16]. They are written as  

∆𝑍𝑗 =  𝛾𝑗 𝑗 ′ 𝑍𝑗 ′

𝑗 ′

 

                                                                                                                                                                             (5.1) 
Alternatively 

∆𝜑 =    𝑎𝑗𝛾𝑗 𝑗 ′

𝑗

 𝑍𝑗
𝑗

 

                                                                                                       (5.2) 

Where  𝛾𝑗 𝑗 ′ are the coefficients of the Zernike expansion of the derivative of the j
th

 Zernike. The matrix γ is called 

Zernike derivative matrix and it is given in [16]. The wavefront slope as derived from this method can be written as in 

equation 5.3. 

∆𝑊(𝑥, 𝑦) =
𝜕𝑊

𝜕𝑥
𝑠 +

𝜕𝑊

𝜕𝑦
𝑡 

                                                        

 (5.3) 

𝜕𝑊

𝜕𝑥
=    𝑎𝑗𝛾𝑗 𝑗 ′

𝑥

𝑗

 𝑍𝑗    𝑎𝑛𝑑 

𝑗

𝜕𝑊

𝜕𝑦
=    𝑎𝑗 𝛾𝑗 𝑗 ′

𝑦

𝑗

 𝑍𝑗
𝑗

 

                   (5.4) 

So that combining (5.2), (5.3) and (5.4), 

∆𝑊(𝑥, 𝑦) = 𝑠   𝑎𝑗𝛾𝑗 𝑗 ′
𝑥

𝑗

 𝑍𝑗
𝑗

+ 𝑡   𝑎𝑗𝛾𝑗 𝑗 ′
𝑦

𝑗

 𝑍𝑗
𝑗

 

            (5.5) 

In matrix notation this equation can be written as 

 

              W = A Z 

 
Where W contains the values of the wavefront slope, A the Zernike coefficients which are to be determined and Z is 

the Zernike polynomial corresponding to the coefficients with a multiplicative factor of shear. The number of 

measurements is typically more than the number of unknowns, so a least square solution is useful. This over 

determined system is solved as follows: 
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                                      W  Z
T 

  = A Z Z
T
  

 
                          W  Z

T 
  (Z Z

T
)

-1
   = A (Z Z

T
) (Z Z

T
)

-1   
                                     (5.6) 

 
                                                          A = W Z

T 
  (Z Z

T
)

-1
 

 

    A provides the Zernike coefficients. Using the Zernike coefficients, the aberrated wavefront is reconstructed as 

 

𝑊(𝑥, 𝑦) =  𝑎𝑗

𝑁

𝑗=2

𝑍𝑗  

                                                                           (5.7) 

where aj
 
are the Zernike expansion coefficients. So far the considerations have involved, derivations based on the 

theory for ∆Wx 
and ∆Wy, with the resulting polynomial expressions formulated in terms of circle of unit radius. The 

Figure 5 shows that the 2D wavefront error map computed from noisy interferometric image fringe pattern. 

 

 
Figure 5. The 2D wavefront error map as computed from the Zernike polynomials   

 

VI. TIME REDUCTION WITH DATA PARALLELISM USING LABVIEW 

In LabVIEW we used data parallelism, which is a programming technique for splitting a large data set into 

smaller chunks that can be operated on in parallel. After the data has been processed, it is combined back into a single 

data set. By adopting data parallelism, we reduced the time by modifying the process by utilizing multi-core processing 

power. It uses efficiently by all processing power available.  We split the total data by 3 different sizes then proceeded 

with splitted data for faster calculation as shown in Fig.6. Parallel loop iterations allow LabVIEW to take advantage of 

multiple processors to execute the For Loop faster. We used a computer with the specification of Intel ® Core (TM) i3 

CPU @3.2 GHz with 4GB RAM.   
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Figure 6.Typical representation of Data Parallelism used in LabVIEW 

 

The following table shows the comparison of computing time for image size 256 X 256  using single 

dimensional FFT and 2D FFT. But the required time is 20 milliseconds. It is really achievable using multi core systems 

with parallel programming. 

 

FFT 

Execution Time on 

Single Core 

Processor without 

data parallelism 

(milliseconds) 

Execution Time 

on Core -3 

Processor 

without data 

parallelism 

(milliseconds) 

Execution Time 

on Core -3 

Processor with 

data parallelism 

(milliseconds) 

1D 1300  1200 800 

2D 600 500 50 

Table 1. Time measurements for different images 

VII. CONCLUSION 

In this paper, we attempted to simulate the fringe pattern with respect to shearing interferometer using Zernike 

polynomials. The wavefront errors are incorporated by adding Gaussian noise in the interferogram. We reported that 

the denoising method using 2D FFT using data parallelism in optimized way to reduce the time compare to the existing 

algorithm.  We utilized the use of Fourier transforms techniques to estimate the wavefront errors in an optimized way 

using 2D FFT.  In an adaptive optics situation, one requires a fast method of wavefront sensing and reconstruction. We 

included data parallelism for fast computation and the total was drastically reduced from 1300 milliseconds to 50 

milliseconds. 
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