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ABSTRACT: A class of cubic trigonometric Bézier curve with a shape parameter is presented in this paper. Each 
curve segment is generated by four consecutive control points. The shape of the curve can be adjusted by altering the 
values of shape parameters while the control polygon is kept unchanged. These curves are closer to the control polygon 
than the cubic Bézier curves, for all values of shape parameter. With the increase of the shape parameter, the curve 
approaches to the control polygon. The effect of the shape parameters on the shape diagram of cubic trigonometric 
Bézier curve are made clear. 
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I. INTRODUCTION 
Spline curves and surfaces are a classical tools for geometric modelling in computer Aided Geometric 

Designing(CAGD) and Computer Graphics(CG). During the last few years, a major research focus has been the use of 
splines in multiresolution models. The basic ingredient of geometric modelling is the construction and manipulation of 
curves and surfaces. If we wish to preserve the shape of the curve and surface, it is required to choose appropriate basis 
functions. For these reasons the Bézier curve and surface representation plays an essential role in CAGD and CG. The 
classical Bézier curves have some limitations. In the one hand, the shape and position of the Bézier curve is fixed 
relative to their control polygon. In the other hand, they can not express conics and some transcendental curves. Thus 
people attempt to find a solution of the problem in the non-polynomial function space. The trigonometric splines are 
used to create spline curves and surfaces that are in many ways superior to the most common B-splines.  

Trigonometric B-splines were first presented in [1] and the recurrence relation for the trigonometric B-splines of 
arbitrary order was established in [2]. In recent years, several new trigonometric splines have been studied in the 
literature; see [3], [4], [5] and [6]. In [7] cubic trigonometric Bézier curve with two shape parameters were presented. In 
[8], a novel generalization of Bézier curve and surface with n shape parameters are presented. In [9], the cubic 
trigonometric polynomial spline curve of G3continuity is constructed, which can be G5 continuity under special 
condition. In [10], uniform T-B-spline basis function of (n + 1)th order and its solution is presented. In [11], quartic 
splines with C2 continuity are presented for a non-uniform knot vectors which are C2 and G3 continuous under special 
case. Algebraic-Trigonometric blended spline curves are presented in [12] which can represent some transcendental 
curves. Cubic trigonometric Bézier curve with two shape parameters is presented in [13]. Recently in [14], a quadratic 
trigonometric Bézier curve with shape parameter is constructed which is G1continuous. In [15], the generalized basis 
functions of degree n + 1 with two shape parameters is presented. The cubic trigonometric polynomial spline curve of 
G1 continuity is constructed in [16], which can be G3 continuity under special condition. In [17], the cubic 
trigonometric polynomial curve similar to the cubic Bézier curves is constructed. In [18], the shape features of the 
cubic trigonometric polynomial curves with a shape parameter are analyzed. In [19] and [20] quartic and cubic 
trigonometric Bézier curve respectively with  shape parameter is presented and the effect of shape parameter is studied. 

In this paper a cubic trigonometric Bézier curve with a shape parameter with a different basis functions, is presented. 
The paper is organized as follows. In section 2, cubic trigonometric Bézier basis functions with a shape parameter are 
established and the properties of the basis functions are shown. In section 3, cubic trigonometric Bézier curves are 
given and some properties are discussed. By using shape parameters, shape control of the curves are studied in section 
4. The representation of ellipse is also illustrated in this section. In section 5, the approximability of the cubic 
trigonometric Bézier curve and the cubic Bézier curve corresponding to their control polygon are shown. Our results 
are supported by various numerical examples in each section. 
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II. CUBIC TRIGONOMETRIC BÉZIER BASIS FUNCTIONS  
 

Definition 1. For an arbitrarily selected real value of 휆 where 휆 ∈ [0,1], the following four functions of 푡 (푡 ∈ [0,1]) 
are defined as Cubic Trigonometric Bézier basis functions with a shape parameter  휆 :  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧푏 (푡) = (1− sin 푡)(1− 휆sin 푡)

푏 (푡) = {1− (1 − cos 푡)(1 − 휆cos 푡) }

푏 (푡) = {1− (1 − sin 푡)(1− 휆sin 푡) }

푏 (푡) = (1− cos 푡)(1− 휆cos 푡)

																																																																																																																																		(1) 

The Properties of the Basis Functions 
 
Theorem 1. The basis functions (1) have the following properties: 
(a) Non-negativity: 푏 (푡) ≥ 0 for 푖 = 0,1,2,3. 
(b) Partition of unity:  ∑  푏 (푡) = 1 
(c) Monotonicity: For a given parameter t, as the shape parameter 휆  increases, 푏 (푡) and 푏 (푡) decreases and as the 
shape parameter 휆  decreases, 푏 (푡) and 푏 (푡) increases. 
Proof- (a) For t	∈ [0,1] and 휆 ∈ [0, 1], then 
0 ≤ (1− sin 푡) ≤ 1, 0 ≤ (1− cos 푡) ≤ 1, 0 ≤ (1− 휆sin 푡) ≤ 1 and 0 ≤ (1 − 휆cos 푡) ≤ 1 
It is obvious that 푏 (푡) ≥ 0 for 푖 = 0,1,2,3.  
(b)	 
(b)	∑  푏 (푡) = (1− sin 푡)(1 − 휆sin 푡) + {1− (1− cos 푡)(1− 휆cos 푡) } + {1 − (1− sin 푡)(1 −
휆sin 푡) } + (1 − cos 푡)(1 − 휆cos 푡) = 1. 
The remaining cases follow obviously. 

 
Fig. 1. Cubic Trigonometric Bézier Basis Functions with different values of shape parameter. 

 
In Fig. 1, Cubic Trigonometric Bézier basis functions are plotted by taking t on x axis and bi(t) on y axis, for 휆 = 
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0(dash-dotted lines), 휆 = 0.5(solid lines) and 휆 = 1(dashed lines) where 푏 (푡), 	푏 (푡), 	푏 (푡)	 and 푏 (푡) are denoted by 
blue lines, red lines, green lines and black lines respectively. 

III. CUBIC TRIGONOMETRIC BÉZIER CURVE  
 

Definition 2. Given points 푃  (i=0,1,2,3) in 푅  or 푅 , then  
         푟(푡) = ∑   푏 (푡)푃 	, 푡 ∈ [0,1], 휆 ∈ [0,1]																																																																																																																						(2)                     
is called a Cubic Trigonometric Bézier curve with a shape parameter 휆. 
 

3.1  Properties of Cubic Trigonometric Bézier Curve 
Theorem 2. The Cubic Trigonometric Bézier curves (2) have the following properties: 
(a) Terminal Properties:  
푟(0) = [푃 + 2푃 + 푃 ] and  푟(1) = [푃 + 2푃 + 푃 ],                      (3) 
 (b) Geometric invariance: 
The shape of a cubic trigonometric Bézier curve is independent of the choice of coordinates, i.e. (2) satisfies the 
following two equations: 
푟(푡; 휆;푃 + 푞,푃 + 푞,푃 + 푞,푃 + 푞) = 푟(푡; 휆;푃 ,푃 ,푃 ,푃 ) + 푞, 
푟(푡; 휆;푃 ∗ 푇,푃 ∗ 푇,푃 ∗ 푇,푃 ∗ 푇) = 푟(푡;휆;푃 ,푃 ,푃 ,푃 ) ∗ 푇,                                                                                (4) 
푡 ∈ [0,1],휆 ∈ [0,1] 
where q is arbitrary vector in 푅  or 푅 , and T is an arbitrary 푑 × 푑 matrix, d=2 or 3. 
(c) Convex hull property: 
The entire cubic trigonometric Bézier curve segment lies inside its control polygon spanned by 푃 ,푃 ,푃 ,푃 . 
(d) Symmetry:  
푃 ,푃 ,푃 ,푃  and 푃 ,푃 ,푃 ,푃 		define the same cubic trigonometric Bézier curve in different parameterizations, i.e., 
r (t; 휆; 푃 ,푃 ,푃 ,푃 ) = r (1 − t; 휆; 푃 ,푃 ,푃 ,푃 ) 

IV. SHAPE CONTROL OF CUBIC TRIGONOMETRIC BÉZIER CURVE  
 

For 푡 ∈ [0,1], we can write (2) as follows: 
푟(푡) = ∑  푃 푐 (푡) + 휆sin 푡 1− sin 푡 휆sin 푡 − 2 (푃 − 푃 ) +  

            휆cos 푡(1 − cos 푡)(휆cos 푡 − 2)(푃 − 푃 )                                                                                                     (5) 
 
where 푐 (푡) = (1 − sin 푡), 푐 (푡) = {1 − (1− cos 푡)}, 푐 (푡) = {1− (1− sin 푡)} and 푐 (푡) = (1−
cos 푡). 

Obviously, shape parameter 휆 affect curves only on the control points (푃 − 푃 ) and (푃 − 푃 ) respectively. Also, 
change of one control point will alter at most four segments of the curve. So, local adjustment can be made without 
disturbing the rest of the curve. 

The shape parameter 휆 also serves to effect local control in the curves. As 휆 increases, the curve moves in the 
direction of the control points	(푃 − 푃 ) and (푃 − 푃 ) and as 휆 decreases the curve moves in the opposite direction to 
the control points (푃 − 푃 ) and	(푃 − 푃 ). In Fig. 2 the effect of shape parameter 휆 on the Cubic Trigonometric Bézier 
curve for 휆 = 1 (green lines), 휆 = 0.5 (red lines) 휆 = 0 (blue lines) is illustrated. Fig. 3 shows a computed example 
using the 17 control points. In order to construct a closed Cubic Trigonometric Bézier curve, we can set 푃 	= 푃 , 푃  = 
푃 , 푃  = 푃 . 

4.1 The Representation of Ellipse 
Theorem 3. Let 푃 ,푃 ,푃 	and	푃 	be four control points on an ellipse with semiaxes a and b; by proper selection of 
coordinates, their coordinates can be written in the form 푃 =(8a, 4b) , 푃 =(8a, 8b) , 푃 =(8a, 8b) , 푃  =(4a, 8b). Then the 



         
 

            
                                                  
                                           ISSN(Online) : 2320-9801 
                                            ISSN (Print) :  2320-9798                                                 

International Journal of Innovative Research in Computer 
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 4, Issue 4, April 2016          

Copyright to IJIRCCE                                                             DOI: 10.15680/IJIRCCE.2016. 0404275                                         7721 

 

corresponding Cubic Trigonometric Bézier curve with the shape parameter 휆 = 0 and local domain t ∈ [0, 1] represents 
an arc of an ellipse with	푥	(푡) = 7푎	+ 	푎 cos 푡,  푦(푡) = 	7푏	+ 	푏 sin 푡.  
Proof- If we take 푃 =(8a, 4b) , 푃 =(8a, 8b) , 푃 =(8a, 8b) , 푃  =(4a, 8b) into (2), then the coordinates of Cubic 
Trigonometric Bézier curve are 푥	(푡) = 7푎	 + 	푎 cos 푡,  푦(푡) = 	7푏	 + 	푏 sin 푡. 
 
This gives the intrinsic equation: 

 
 

Fig. 2. Effect of shape parameter on the Cubic trigonometric Bézier curve 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 3. Cubic Trigonometric Bézier curve with the given control polygon 
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푥 − 7푎
푎 +

푦 − 7푏
푏 = 1 

 

V. APPROXIMABILITY   
 

Control polygon provides an important tool in geometric modeling. It is an advantage if the curve being modeled 
tends to preserve the shape of its control polygon. Here we show the relations of the Cubic Trigonometric Bézier curves 
and cubic Bézier curves corresponding to their control polygon. 

Suppose 푃 ,푃 ,푃 	and	푃 		are not collinear; the relationship between Cubic Trigonometric Bézier curve r(t),  and 
the cubic Bézier curve B(t) 	= ∑   P (1− t) 	t   with the same control points P (i	 = 	0, 1, 2, 3)	are as follows: 
r(0) = [P + 2P + P ],  r(1) = [P + 2P + P ], P = B(0), P = B(1)		 

and  B − P∗ = (P − P − P + P ) 

r
1
2 − P∗ = 		

1
8 (√2− 1)(√2− λ) (P − P ) + 	

1
8 √2− 1 	(√2− λ) (P − P ) 

where P∗ = (P + P ) 

we have r − P∗ = 		 (√2− 1)(√2− λ) (P − P − P +	P ) 

Let  B − P∗ = r − P∗ 


1
8

(P − P − P + P ) =
1
8 (√2− 1)(√2− λ) (P − P − P +	P ) 

 (√2− 1)(√2− λ) = 1 
 λ = −1 
From here we conclude that Cubic Trigonometric Bézier curves are closer to the control polygons than the Cubic 
Bézier curves when 휆 > 0. respectively. 

VI. CONCLUSION  
 
As mentioned above Cubic Trigonometric Bézier curves have all the properties that cubic Bézier curves have. 

However they can deal precisely with circular arcs, cylinders, cones etc., which can only be approximated by cubic 
curves. Also, because there is nearly no difference in structure between a Cubic Trigonometric Bézier curve and a cubic 
Bézier curve, it is not difficult to adapt a Cubic Trigonometric Bézier curve to a CAD/CAM system that already uses 
the cubic Bézier curves.   

REFERENCES 
 

1. I. J. Schoenberg, 1964, On Trigonometric Spline Interpolation, J. Math. Mech., Vol. 13, pp. 795-825. 
2. T. Lyche,  R. Winther, 1979, A Stable recurrence relation for trigonometric B-splines, J. Approx. Theory, Vol. 25, pp. 266-279.   
3. X. Han, 2002, Quadratic Trigonometric Polynomial Curves with a Shape Parameter, Computer Aided Geometric Design, Vol. 19, pp. 479-

502. 
4. X. Han, 2003, Piecewise Quadratic Trigonometric Polynomial Curves, Mathematics of Computation, Vol. 72, pp. 1369-1377. 
5. X. Han, 2004, Cubic Trigonometric Polynomial Curves with a Shape Parameter, Computer Aided Geometric Design, Vol. 21, pp. 535-548. 
6. X. Han, 2006, Quadratic trigonometric polynomial curves concerning local control, Applied Numerical Mathematics, Vol. 56, pp. 105-

115. 
7. X. A. Han, Y. C.  Ma, X. L.  Huang,, 2009, The Cubic Trigonometric Bézier Curve with Two Shape Parameters, Applied Mathematical 

Letters, Vol. 22, pp. 226-231. 
8. Xi-An Han, YiChen Ma, XiLi Huang, 2008, A novel generalization of Bézier curve and surface, Journal of Computational and Applied 

Mathematics, 217, pp. 180-193. 
9. Cheng Wei Wang, Jul.2007, Cubic Trigonometric Polynomial Spline Curves with Shape Parameter,  Journal of Beijing Institute of 

Clothing Technology, vol.28, pp. 50-55. 
10. Benyue Su and Youdu Huang, 2005, Properties and Applications of T-B Splines, College Mathematics, 21(1), pp.87-90 (in Chinese). 
11. Xuli Han, 2011, A class of general quartic spline curves with shape parameters, Computer Aided Geometric Design, 28, pp. 151-163. 



         
 

            
                                                  
                                           ISSN(Online) : 2320-9801 
                                            ISSN (Print) :  2320-9798                                                 

International Journal of Innovative Research in Computer 
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 4, Issue 4, April 2016          

Copyright to IJIRCCE                                                             DOI: 10.15680/IJIRCCE.2016. 0404275                                         7723 

 

12. Lanlan Yan, Jiongfeng Liang, 2011, A Class of Algebraic-Trigonometric Blended Splines,  Journal of Computational and Applied 
Mathematics, 235, pp. 1713-1729 

13. Huayong Liu, Lu Li, Daming Zhang, 2011, Study on a Class of T-C Bézier Curve with Shape Parameters, Journal of Information and 
Computational Science, 8: 7, pp. 1217-1223. 

14. Wei Xiang Xu, Liu Qiang Wang, Xu Min Liu, 2011, Quadratic TC-Bézier Curves with Shape Parameter, Advanced Materials Research, 
vols. 179-180, pp. 1187-1192. 

15. L.L. Yan, X.B. Yang, L.Z. Song, 2008, Bézier Curves with Two Shape Parameters, Journal of Engineering Graphics, vol.29, pp. 88-92. 
16. Xiaoqin Wu, Xuli Han, 2007, Cubic Trigonometric Polynomial Spline Curves with a Shape Parameter, Computer Applications and 

Software, vol.24, pp.62-64. 
17. XiaoqinWu, Xuli Han, Shanming Luo, 2008, Quadratic Trigonometric Polynomial Bézier Curves with a Shape Parameter, Journal of 

Engineering Graphics, vol.29, pp. 82-87. 
18. Xi-An Han, XiLi Huang, YiChen Ma, 2010, Shape Analysis of Cubic Trigonometric Bézier Curves with a Shape Parameter,  Applied 

Mathematics and Computation, 217, pp.2527-2533. 
19. Mridula Dube, Reenu Sharma, 2013, Quartic Trigonometric Bézier Curve with a shape parameter,  International Journal of Mathematics 

and Computer Applications Research (IJMCAR), Vol. 3, Issue 3, Aug 2013, pp. 89-96. 
20. Mridula Dube, Reenu Sharma, 2015, Shape Features of Cubic Trigonometric Bézier Curve With Two Shape Parameters,  Proceedings of 

National Conference in Pure and Applied Mathematics, 2015, pp. 13-17. 
 

BIOGRAPHY 
 

Dr. Reenu Sharma is working as Assistant Professor in Department of Mathematics, Mata Gujri Women’s College, 
Jabalpur, M.P. She received Ph. D. in 2014 and MSc degree in 1997 from Rani Durgawati University, Jabalpur, M.P. 
Her research interests are Computer Aided Geometric Designing, Spline Theory etc. 

 
 


