

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311012 10445

An Innovative Research on Software

Development Life Cycle Model
Sucharita Bansal

1
, Ankush Goyal

2

PG Student, Dept. of CSE, Shri Ram College of Engineering and Management, Affiliated to Maharshi Dayanand

University, Palwal, India
1

Assistant Professor, Dept. of CSE, Shri Ram College of Engineering and Management, Affiliated to Maharshi

Dayanand University, Palwal, India
2

ABSTRACT: The Software Life Cycle Model (SLCM) is a process of building a good software & its lifecycle stages

provides Quality & Correctness of good software. All the stages of lifecycle are important in itself. One wrong step in

lifecycle can create a big mistake in the development of Software.

Being an owner of Software Company we must know the development life cycle of the software. Even our buyer may

also be aware of this life cycle. So, everyone wants to know that how its development begins, which are the

development processes, which is the end portion of development life cycle.

KEYWORDS: Software, System Development Life Cycle Model (SDLC) and Project Management, Software

Development Process or Activities, Stakeholders

I. INTRODUCTION

Software is basically the combination of computer programs, data structure and documentation. The Aim of the

Software Engineering is to estipulate a concrete framework to build a high quality of software.

The software industry includes many different processes, for e.g., analysis, development, maintenance and

publication of software. This industry includes software services, such as training, documentation and consulting [1].

 Programs

Software is a set of computer programs or instructions that provides the desired function and performance.

 Data Structure

Software is a data structure that enables the program to adequately manipulate information.

 Documentation

Documentation describes the operation and use of programs.

Hence, Software is composed of computer programs, data structure & documentation.

Software = Programs + Data Structure + Documentation

A. Difference between Software & Program?

i. Programs are developed by individual for Personal use. They are therefore, small in size & have limited

functionality, but Software Products are extremely large.

ii. In case of Program, A single developer is involved and user interface may not be so important because the

programmer him/herself is the sole user. But In case of Software Products, A large number of developers

are involved but users who are not involved with the development are attached.

iii. A Program can be developed according to the programmer’s individual style of development. But Software

Products must be development using software Engineering Principles.

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311012 10446

II. IMPORTANCE OF SOFTWARE DEVELOPMENT PROCESS MODELS OR ACTIVITIES

A Software Life Cycle Model (SLCM) is also called a Software Development Process Model. System

development is the process of defining, designing, testing and implementing a software application. This is a structure

imposed on the development of a software product. A system development project includes all the activities from the

time a potential requirement has been identified until the system has been fully implemented [2].

There are several Models for such processes, each describing approaches to a variety of tasks or activities that take

place during the process. ISO/IEC 12207 is an international standard for software lifecycle processes. It aims to be the

standard that defines all the tasks required for developing and maintaining software.

The Analysis, Designing, Implementation, Testing, Documenting, Evaluation and Maintenance are the steps in the

Software life cycle development process. We have numerous types of SDLC Models like Waterfall, Agile, and Spiral

etc. Several Models exist to streamline the development process [2] [3].

 Waterfall Model

In this model, after each phase is completed, it proceeds to the next stage. Reviews may occur before moving to the

next phase, which allow for the possibility of changes. Waterfall discourages revisiting any prior phase once it is

complete. This "inflexibility" is the main limitation of this model [4].

The waterfall model depicts a process, where developers are to adopt the following phases in order:

1) Requirement Specification (Requirement Analysis)

2) Software Design

3) Integration

4) Testing (or Validation)

5) Deployment (or Installation)

6) Maintenance

 Spiral Model

The main characteristic of a Spiral model is risk management at regular stages in the development cycle. Barry

Boehm proposed a formal software system development "spiral model", with emphasis on a key area of risk

analysis that is neglected by other methodologies. The spiral model is visualized as a process passing through a

number of iterations. The first stage is to formulate a plan, and then strive to find and remove all potential risks

through careful analysis and, if necessary, by constructing a prototype. If some risks cannot be ruled out, the user

has to decide whether to terminate the project or to ignore the risks [5].

 Iterative and incremental development Model

Iterative development model prescribes the construction of initially small but ever-larger portions of a software

project to help all those involved to uncover important issues early before problems or faulty assumptions can lead

to disaster. Iterative processes can assist with revealing and refined definition of design goal [6].

 Agile development Model

Agile software development uses iterative development as a basis but advocates a lighter and more people-centric

viewpoint. Agile processes use feedback as primary control mechanism. First, one writes automated tests, to

provide concrete goals for development. The next step is coding by a pair of programmers, which is complete

when all the tests are successfully passed. The incomplete but functional system is demonstrated for the users. At

this point, the practitioners start again on writing tests for the next most important part of the system [7].

 Code and fix

"Code and fix" development is not a deliberate strategy and schedule pressure on software developers. With

incomplete design, programmers begin producing code. At some point, testing begins (often late in the

development cycle), to fix the bugs before shipment [8].

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311012 10447

III. PROPOSED WORK

A Software Process consisting of many different components processes. Most important being Project Management

(PM) & Development Process (DP).

Project Management (PM) is a task that requires a lot of time and effort. A Software life cycle model is allowing

focus on important features of the work, downplaying excessive detail. It is providing a standard work unit hierarchy

for progressive decomposition of the work into manageable chunks. It also provides a framework for definition and

storage of the deliverables product produced by the projects and communicates our development strategy to project

stakeholders [2] [9].

All this SDLC Model must follow the steps for developing errorless software [4]. There are seven types of software

development Activities that are mentioned as below:-

(i) Analysis or Planning

(ii) Design

(iii) Implementation

(iv) Testing

(v) Documenting

(vi) Evaluation or Deployment

(vii) Maintenance

For the moment, it is worth trying to learn the steps (Fig. 1) in the correct order. I usually use a silly mnemonic for

this: A Dance In The Dark Every Monday which helps me remember ADITDEM:

Fig. 1 Activity of the System Development Life cycle (SDLC)

We might be able to make up a better mnemonic than this one – so long as it helps you, then it’s OK! Next, we will

take a closer look at each of the stages.

IV. PROPOSED METHODOLOGY AND DISCUSSION

In this paper, now we discuss about the Development Process (DP), it focuses on how the software is to be

engineered. Before we think about how software is developed, it is worth considering how any product is developed,

because the process is essentially the same [10]. For example (Fig. 2), think about the process of developing a new

model of TV.

Analysis

Design

Implementation

Testing

Documentation

Evaluation

Maintenance

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311012 10448

Fig. 2 Example of the developing a new model of TV

Stage 1: Analysis

The main purpose of the analysis stage is to be absolutely clear about what the program is supposed to do. Often, a new

program will start from a rough idea. Before a new product is developed, someone within the company, probably in the

marketing department, analyses what people want. They consider which products are selling well, look at what rival

companies are producing, and maybe even carry out a survey to find out what people want. From this they can work

out which features are required in their newest model, including its size, target price range and various technical

requirements.

They use this information to produce a specification for the new model of TV. This state’s clearly all the features that

it must have [10] [11].

Stage 2: Design

The next stage is to turn the specification into a design. Designers will get to work, alone or in groups, to design

various aspects of the new TV. What will it look like? How will the controls be laid out? Sketches will be drawn up and

checked against the specification. Another team of designers will be planning the internal circuitry, making sure it will

allow the TV to do all the things set out in the specification [12].

Two common ones are called pseudocode and structure diagrams. There are many others, but we will only consider

these two. It is easy to understand these if we think about an everyday example, rather than a computer program.

Think about making tea. Here is a list of instructions for this task:

1. Get a mug out of the cupboard

2. Put a teabag in it

3. Boil the kettle

4. Pour boiling water from the kettle into the mug

5. Stir.

This is an example of pseudocode. It is a numbered list of instructions written in normal human language (in this case,

English). It doesn’t go into all the details, but it gives the main steps.

Another way of showing this is as a structure diagram (Fig. 3). It could look like this:

Fig. 3 Example of the structure diagram

Each instruction goes into a separate box. We read pseudocode from top to bottom. We read a structure diagram

from left to right.

Making tea

Stir Pour water
from kettle

into mug

Get
mug

from

mug

cupbo

ard

Put
teabag

in mug

Boil

kettle

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311012 10449

Stage 3: Implementation

Once the design phase is over, engineers will get to work to actually build a prototype. Some will build the case

according to the design, while others will develop the electronics to go inside. Each part will be tested on its own, then

the whole thing will be assembled into a (hopefully) working TV set [13].

Stage 4: Testing

Before the new model can be put on sale, it will be thoroughly tested. A wide range of tests will be carried out. We

looked at testing at the start of this section. Whether we are talking about a new TV, a new item of clothing, or a new

computer program, the manufacturers will spend a great deal of time on testing. This will be carefully planned to test a

wide range of conditions [14].

We can divide it up into three types of testing.

• Testing normal conditions

Making sure the program does what it should do when used ‘normally’. It might be tested under ‘normal’

conditions. It could be put in a room at normal room temperature, and checked to see that all the controls work

correctly, the display is clear, it is nice and stable, and so on.

• Testing extreme conditions

Making sure the program can handle situations that are at the edge of what would be considered normal. If it

passes this type of testing, it might next be tested under ‘extreme’ conditions.

For example, does it still work if the temperature is below freezing, or very hot and humid, if it used for long

periods of time, or with the volume or the brightness or contrast set to their maximum values.

• Testing exceptional conditions

Making sure it can handle situations or inputs that it has not been designed to cope with. Finally, it could be tested

under ‘exceptional’ conditions. What happens if a 2-year old picks up the remote and presses all the buttons at

once? What happens if there is a power cut, or a power surge?

If it fails any of these tests, it might be necessary to go back to the implementation (or even design) stage and do

some further work, before re-testing.

If it passes all the tests, then the new TV can go into production.

Stage 5: Documentation

However, the development isn’t yet complete! Some documentation will be needed to go with the TV – a User Manual

containing all the instructions about how to work the new TV, and probably a Technical Manual for repair engineers.

When we buy a product, whether it is a computer program or anything else, we usually get some kind of User Guide

with it (e.g. Fig. 4). This tells us how to use the product. Some software comes with a big fat book called User Guide or

Manual; others come with the User Guide on a CD [15].

Fig. 4 Example of the User Guide or Manual

Stage 6: Evaluation

Once the model is in production, the company will want to evaluate it. Evaluation involves reviewing the software

under various headings to see if it is of the quality required.

We will review software under these headings: Does it do what it is supposed to do? Is it easy to use? And, from the

engineer’s point of view, is it easy to repair? [16]

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311012 10450

Stage 7: Maintenance

Stage 6 should be the end of the story, but in the real world, there needs to be stage 7 – maintenance [17].

There are different types of maintenance that might be required. These are called corrective maintenance, perfective

maintenance and adaptive maintenance. We don’t need to know these names until Higher level, but it is useful to think

about what they mean.

Fig. 5 Example of the Maintenance improving the design

Corrective Maintenance means fixing any bugs that appear once the program is in use. Of course, these should all

have been discovered during testing. However, most programs (but not the ones you will be writing) are so huge and

complex that some bugs are bound to slip through unnoticed. If the bugs are serious in nature, the software company

might issue a free ‘patch’ on its website, so that users can download the patch, and install it with the software, so fixing

the bug. If it is a minor bug, they may not bother.

Perfective Maintenance is adding new features to the software. These might be suggested as a result of the evaluation

stage, or they might be suggested by users. These new features will then be added to the software, and re-issued as a

new version. That’s why software often has version numbers. Each version results from corrective and perfective

maintenance of the earlier versions. So (for e.g.), BloggProg 3.2 will be similar to BloggProg 3.1, but with bugs fixed,

and some new features added.

The third type of maintenance is Adaptive Maintenance. This is where the software has to be changed to take account

of new conditions. The most obvious example is when a new operating system comes out. Perhaps BloggProg 3.2 was

designed to run under Windows 2000. When Windows XP came along, changes had to be made to BloggProg so that it

would work under the new operating system.

These seven stages are an essential part of the production process.

Most software projects fail in the group of companies. In fact, they reports that more than 75% software projects are

unsuccessful because they are over budget, late, missing functions or a combination of all three.

Moreover, 30% of software projects are so poorly executed that they are cancelled before completion. In my

experience, software projects using modern technologies such as Java, Java 2 Enterprise Edition (J2EE), XML and

Web services are no exception to this rule [1].

B. What is a Stakeholder?

A Stakeholder in the architecture of a system is an individual, team, group, organization, or classes thereof, having an

interest in the realization of the system.

Most system development projects include representatives from most if not all of these stakeholders groups, although

their relative importance will obviously vary from project to project.

The architect must ensure that there is adequate stakeholder representation across the board, including non-technology

stakeholders (such as acquires and users) and technology-focused ones (such as developers, system administrators, and

maintainers) [18].

We classify stakeholders according to their roles and concerns as in the following table 1:-

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 11, November 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0311012 10451

Table 1: Stakeholders Roles and Responsibility

Stakeholders Name Roles and Responsibilities

Acquires Oversee the procurement of the system

or product.

Assessors Oversee the system’s conformance to

standards and legal regulation.

Developers Construct and deploy the system from

specifications (or lead the teams that do

this).

Maintainers Manage the evolution of the system

once it is operational.

Production Engineers Design, deploy, and manage the

hardware and software environments in

which the system will be built, tested,

and run.

Suppliers Build and/or supply the hardware,

software, or infrastructure on which the

system will run.

Support Staff Provide support to users for the product

or system when it is running.

System Administrators Run the system once it has been

deployed.

Testers Test the system to ensure that it is

suitable for use.

Users Define the systems, functionality and

ultimately make use of it.

V. CONCLUSIONS AND FUTURE WORK

After completing this research, it is concluded that Testing is necessary on each phase of Software Development Life

Cycle. It defines each step in the software development process describing how to develop, how to maintain and how to

replace specific software. There are various types of SDLC Models for developing systems for different sizes of

projects and requirements, but all of them start testing after implementation. In future, it will possible to relate new

coming testing techniques with phases of SDLC, because it reduces the development time. Timing is very crucial in

software development. If a delay happens in the development phase, the Market could be taken over by the

competitor. Also if a ‘bug’ filled product is launched in a short period of time (quicker than the comp etitors), it may

affect the reputation of the company. So, there should be a trade-off between the development time and the quality

of the product. Customers don’t expect a bug free product but they expect a user -friendly product that they can give

a thumbs-up to.

REFERENCES

[1] Introduction to Software Engineering /Process available at https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Process

[2] Several software development approaches available at https://en.wikipedia.org/wiki/Software_development_process#Approaches

[3] Software Life Cycle Model (SLCM) available at http://www.tutorialspoint.com/software_engineering/software_development_life_cycle.htm
[4] Systems development life cycle models (SDLC) available at https://en.wikipedia.org/wiki/Systems_development_life_cycle

[5] Software Analysis available at https://en.wikipedia.org/wiki/Systems_development_life_cycle#System_analysis

[6] Software Testing available at https://en.wikipedia.org/wiki/Systems_development_life_cycle#Testing
[7] Software Evaluation available at https://en.wikipedia.org/wiki/Systems_development_life_cycle#Evaluation

[8] Rlewallen, "Software Development Life Cycle Models", 2005 http://codebeter.com.

https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Process
https://en.wikipedia.org/wiki/Software_development_process%23Approaches
http://www.tutorialspoint.com/software_engineering/software_development_life_cycle.htm
https://en.wikipedia.org/wiki/Systems_development_life_cycle
https://en.wikipedia.org/wiki/Systems_development_life_cycle#System_analysis
https://en.wikipedia.org/wiki/Systems_development_life_cycle#Testing
https://en.wikipedia.org/wiki/Systems_development_life_cycle#Evaluation
http://codebeter.com./

