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ABSTRACT: Optimization is the field where most compiler research is prepared today. The tasks of the Front-end 

(scanning, parsing, semantic analysis) are well implicit and optimized. Code generation is moderately straightforward. 

High-quality optimization is more of an art than a science. Optimization is the process of converting a piece of code to 

make it more efficient (either in terms of time or space) without changing its output or side-effects. Compiler 

optimization leads to the enhancement of machine code and/or intermediate code produced by other phases of the 

compiler. It results in reduced run time and/or space for the object program. Today’s compilers have a plethora of 

optimizations to choose from, and the correct choice of optimizations can have a significant impact on the performance 

of the code being optimized. Furthermore, choosing the correct optimizations has been a long standing problem in 

compilation research. In Initial stages of compilation research, We have poor quality models that help to check whether 

a code is optimized or not. Also, efficiency of existing systems was minimal. Taking all initial systems and models into 

account, We proposed a system that helps to choose the best possible optimization technique with better efficiency 

using modernized supervised or unsupervised machine learning approaches. Here we are going to use the Naive 

Bayesian Multinomial Model  Supervised Machine Learning approach based on the static features extracted from the 

code.  

KEYWORDS: Code Optimization, Code Autotuning, Control Flow Graph, Machine Learning, Intermediate 

Representation, Translation, Data Flow Graph, Intermediate Representation. 

I.INTRODUCTION 

 

Compilers have two jobs – translation and optimization. They must first translate programs into binary correctly. 

Secondly they have to find the most efficient translation possible. Compiler optimization consists of a set of techniques 

meant to minimize some attributes of a program such as the execution time, memory or energy consumption, 

etc.Machine learning predicts an outcome for a new data point based on prior data. This ability to predict based on prior 

information can be used to find the data point with the best outcome and is closely tied to the area of optimisation. 

There are primarily three different ways of improving the performance of compiler optimizations subjected to machine 

learning algorithms such as Optimization Phase Ordering, Optimization Tuning, Optimization Selection. In this 

chapter, We facilitate Optimization Selection using Naive Bayesian supervised Machine Learning approach taking 

static features of code into account. 

II.METHODOLOGY 

Our proposed system is primarily based on the Supervised Machine Learning Naive Bayesian approach. The Naive 

Bayesian Multinomial Classifier works based on the presence of a particular feature in a class unrelated to the presence 

of any other feature in the same class.Such principle helps to predict whether a code needs to be optimized or not. It 

involves three stages. First wetrain the model using static features dataset created with help of a pylint tool. Secondly 

we separate test and training data using dataframes. Finally, with the help of the score method we can predict the 

optimized code.  

 

When the code is not optimized it starts suggesting the optimization techniques like dead code elimination, loop 

unrolling, strength reduction, strength reduction, compile time evaluation. It involves three stages. First we need to 

extract the essential static features from the dataset we used for optimized code prediction. Secondly start training the 

model by separating the dataset into test and training data using dataframes. Finally, with the help of the score method 

we are able to suggest the optimization techniques like dead code elimination, loop unrolling, strength reduction, 

strength reduction, compile time evaluation etc., needs to be used. Efficiency of the proposed system is 90 percent. 
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III. SYSTEM ARCHITECTURE 

 

Fig 3.1 Architecture Diagram 

A system architecture consists of system components and the sub-systems developed, that will work together to 

implement the overall system. Our proposed system consists of two sub-systems. The data extraction sub-system is 

solely responsible for collecting the static features of a code. It can be done with the help of Pylint. Pylint is a source-

code, bug and quality checker for the python programming language. Components of Data Extraction System are 

Random Code Generation, Compilation and Execution, Data Set Construction.  

The Classification sub-system consists of two main roles training the model and testing against the trained model. Also 

it helps us to conclude with results optimized or not optimized with help of the trained model. In case the input data is 

not optimized its suggests with optimization techniques like dead code elimination, loop unrolling,inlining, code 

reduction etc., . Components of Classification System are Naive Bayes Classifier, Trained Model, Classifications 

and Suggestion. 

http://www.ijircce.com/
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IV.RESULT 

Our proposed system helps to find the effective optimization technique taking the essential static features of the code 

into account. Results are shown below for the injected static features of the user defined code. Initially our system 

begins with checking whether the code is optimized or not. Furthermore if it’s not optimized it brings an optimization 

technique for refining a code.   

 

Fig 4.1 Optimized or Not Prediction 

 

Fig 4.2 Optimization Technique Prediction 
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V.CONCLUSION AND FUTURE SCOPE 

Machine learning is used to automate code optimization in various ways. Our proposed system that uses Naive Bayes 

Supervised Learning for compiler auto tuning. It involves static data taken from a data extraction tool like pylint. With 

help of static features it can classify optimized or not. In case if it is not optimized, it proceeds with the second phase 

suggesting the best optimization technique with 90% efficiency. For future work, we would like to implement phase-

ordering techniques in a static compiler. In addition, we would also like to incorporate profile information into the 

feature set, which allows us to improve our prediction. 
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