International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Website: www.ijircce.com
Vol. 6, Issue 6, June 2018

Algorithms for Finding an Efficient
 Dominating Set of an Interval Graphand a Split Dominating Set of a Circular-Arc Graph

Dr. V. Rama Latha ${ }^{1}$
Assistant Professor, Department of Mathematics, Presidency University, Bangalore, Karnataka, India ${ }^{1}$

Abstract

Interval graphs are rich in combinatorial structures and have found applications in several disciplines such as traffic control, Ecology, Biology, Computer Science etc. .Circular-arc graphs are introduced as generalization of Interval graphs. If we bend the real line into a circle, then any family of intervals of the real line is transformed into a family of arcs of the circle. In this paper we are presenting an algorithm for finding an efficient dominating set of an interval family if it exists and Also an algorithm for finding a non- split dominating set of circular-arc graph.

KEYWORDS :Interval Graph, Circular-arc graph, Dominating set, Dominating number, Efficient Dominating set, Split dominating set.

I.INTRODUCTION

Let $I=\left\{I_{1}, I_{2}, \ldots \ldots, I_{n}\right\}$ be an interval family. Each interval I_{i} in I has represented by $I_{i}=\left[a_{i}, b_{i}\right]$, for $i=1,2, \ldots \ldots, n$. Here a_{i} is called the left endpoint and b_{i} is called the right end point of I_{i}. Without loss of generality, we may assume that all endpoints of the intervals in I are distinct numbers between 1 and 2 n . The intervals are labeled in the increasing order of their right endpoints. Two intervals I_{i} and I_{j} are said to be intersect each other if they have non-empty intersection. An interval family I is said to be proper if no interval in I is contained in another interval.

A graph $G=(V, E)$ is called an interval graph if there is a one-to-one correspondence between V and I such that two vertices of G are joined by an edge in E if and only if their corresponding intervals in I intersect. Let G be a graph with vertex set V and edge set E.

The open neighbourhood set of a vertex $v \in V$
$N(v)$ or $n b d(v)=\{u \in V / u v \in E\}$
The closed neighbourhood set of a vertex $v \in V$
$N[v]$ or $n b d[v]=n b d(v) \cup\{v\}$
The neighbourhoodnumber[1] of G is defined as the minimum cardinality of a neighbourhood set of G. A vertex in a graph G dominates itself and its neighbours. A subset D of V is said to be a dominating set of G if every vertex in $\langle V-D>$ is adjacent to some vertex in D. The theory of domination in graphs was introduced by Ore and Berge. The domination number γ is the minimum cardinality of a dominating set. A dominating set S of a graph G is called an efficient dominating set[6-7] if $|N[\nu] \cap S|=1$, for every vertex $v \in V(G)$. That is, a dominating set S is efficient if and only if every vertex is dominated exactly once.

For each interval $i, n b d[i]$ denotes the set of all intervals which intersects i (including i). Let max (i) denotes the largest interval in $n b d[i]$. Let us now define $N I(i)$ of the interval i as below.
$N I(i)=j$ if $b_{i}<a_{j}$ and there does not exist an interval k such that $b_{i}<a_{k}<a_{j}$. If there is no such j, then $N I(i)=$ null.

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 6, June 2018
Let $A=\left\{A_{1}, A_{2}, \ldots \ldots, A_{n}\right\}$ be a family of arcs on a circle C. Each endpoint of the arc A_{i} is assigned a positive integer called a co-ordinate. The endpoints are located at the circumference of C in ascending order of the values of the co-ordinates in the clockwise direction.

Suppose that an arc begins at c and ends at point d in the clockwise direction. Then we denote such an arc by [c, d] and the points c and d arc called respectively the head point and tail point of the arc. The arcs are given labels in the increasing order of their head points. If the head point of an arc is less than the tail point of the arc then the arc is called a forward arc. Otherwise it is called a backward arc. A is called a proper arc family if no arc in A contains another arc.A graph $G=(V, E)$ is called a circular-arc graph if there is a one - to - one correspondence between V and A such that two vertices in V are adjacent if and only if their corresponding arcs in A intersect.

Let us now denote the arc family by $A=\{1,2, \ldots \ldots, n\}$, where arc $i=A_{i}$ and G is its corresponding Circular-arc graph. We assume that G is a connected graph. Circular. Let $G=(V, E)$ be a graph. A dominating set[2-5] D of a graph $G=(V, E)$ is a split dominating set if the induced sub graph $<V-D>$ is disconnected. The split domination number [9] $\Upsilon_{\mathrm{s}}(\mathrm{G})$ of G is the minimum cardinality of a split dominating set. A dominating set D of a graph $G=(V, E)$ is a nonsplit dominating set, if the induced sub graph $\langle V-D\rangle$ is connected. The non-split domination number $\Upsilon_{n s}(\mathrm{G})$ of G is the minimum cardinality of a non-split dominating set.Kulli .V.R et.all [6] introduced the concept of split and non split domination in graphs and also in Maheswari, B et all. Define $n b d^{-}[i]$ is the set of all backward intersecting arcs to i and $n b d^{+}[i]$ is the set of all forward intersecting arcs to i and contained in i. Define $d^{-}(i)$ is the number of backward intersecting arcs to i and $d^{+}[i]$ is the number of all forward intersecting arcs to i and contained in i .Define $f A d j(i)$ is the arc which is first contained in i. If there is no contained arc in i then $f A d j(i)$ is the arc which is first forward intersecting arc to i. Define $f m \operatorname{ax}(i)$ is the maximum arc in $n b d^{+}[i]$

An algorithm is a step by step specification on how to perform a certain task. The steps in the algorithm must be simple, unambiguous and be followed in a prescribed order. Further, we will insist that algorithm to be effective. That is, it must always sole the problem in a finite number of steps.

II. PROPOSED ALGORITHM

A.Algorithm for finding an efficient dominating set of an interval graph

Input: Interval family $I=\{1,2,3, \ldots . . ., n\}$

Step 1: Find $\max (1)$.
Step 2: If $d(\max (1))=2$
Step 2.1: $S=\{1\}$
Else
Step 2.2: $S=\max (1)$
Step 3: $L I=$ The largest interval in S.
Step 4 : If $N I(L I)=$ null then
goto step 7
else
goto step 5

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Website: www.ijircce.com
Vol. 6, Issue 6, June 2018
Step 5: If there exists an interval v in $n b d[\max (N I(L I))]$
which is also belongs to $n b d[L I]$ then
Step 5.1: Efficient dominating set does not exists

$$
\text { and goto step } 7
$$

Step 6: $S=S \cup\{\max (N I(L I))\}$ goto step 3
Step 7: End
Out Put : An efficient dominating set of an interval graph of given interval family if it exists.

III.THEOREMS

Theorem 1 :

Let \mathbf{G} be a graph corresponding to an interval family. Let $D=\left\{x_{1}, x_{2}\right\}$ be a minimum dominating set x_{1} dominates $S_{1}=\{1,2, \ldots ., i\} \quad x_{2}$ dominates $S_{2}=\{i+1,, \ldots \ldots, n\}$ then an efficient domination occurs in G where $S_{1} \cap S_{2}=\varnothing$ and cardinality $\left|N\left(x_{2}\right) \cap D\right|=1, \forall x_{2} \in I$.

Proof:
Let $I=\left\{I_{1}, I_{2}, \ldots \ldots, I_{n}\right\}$ be an interval family. Let G be an interval graph of corresponding to an interval family. Let us find the minimum dominating set $D=\left\{x_{1}, x_{2}\right\}$. Suppose x_{1} dominates $S_{1}=\{1,2, \ldots \ldots, i\}$ and x_{2} dominates $S_{2}=\{i+1,, \ldots ., n\}$ when $S_{1} \cap S_{2}=\varnothing \ldots \ldots \ldots$. (A)

We have to show that $\left|N\left(x_{2}\right) \cap D\right|=1, \forall x_{2} \in I$
If possible suppose that $\left|N\left(x_{2}\right) \cap D\right| \neq 1, \forall x_{2} \in I$
This implies that $\left|N\left(x_{2}\right) \cap D\right|=\varnothing$, or $\left|N\left(x_{2}\right) \cap D\right|>1$
Take any vertex $r \in S_{1}$
If $\left|N\left(x_{2}\right) \cap D\right|=\varnothing$
$\Rightarrow|N(r) \cap D|=\varnothing$
But r is adjacent to any vertex in D .
So $\left|N\left(x_{2}\right) \cap D\right|=\varnothing$ is wrong.
If $\left|N\left(x_{2}\right) \cap D\right|>1$
$\Rightarrow|N(r) \cap D|>1$
\Rightarrow ' r ' is adjacent to both x_{1} and x_{2}.
This implies x_{1} and x_{2} dominates r which is contradicts to our hypothesis $S_{1} \cap S_{2}=\varnothing$
So $\left|N\left(x_{2}\right) \cap D\right|>1$ is wrong.
Therefore $\left|N\left(x_{2}\right) \cap D\right| \neq 1, \forall x_{2} \in I$ is wrong.
Hence $\left|N\left(x_{2}\right) \cap D\right|=1, \forall x_{2} \in I$.
$\left|N\left(x_{2}\right) \cap D\right|=1, \forall x_{2} \in I$ implies D is an Efficient dominating set.
Hence the theorem

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Website: www.ijircce.com
Vol. 6, Issue 6, June 2018
Example

Interval family 1

Interval Graph 1

Procedure

Input: Interval Family $I=\{1,2, \ldots . ., 10\}$
Step 1: $\max (1)=4$
Step $2: S=\{4\}$
Step 3: $L I=4$
Step 4 : $N I(4)=6$
Step $5: \max (6)=10$
Step $6: S=\{4\} \cup\{10\}=\{4,10\}$ and goto step3
Step $7: L I=10$
Step $8: N I(10)=$ null
Step 9: End
Output: $\{4,10\}$ is an efficient dominating set.

Theorem 2:

Let $D=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}, k \leq n$ be a minimum dominating set of given interval family $I=\left\{I_{1}, I_{2}, \ldots \ldots, I_{n}\right\}$. If there exists two intervals $p, q \in D$ such that any interval s_{1} intersects both $p, q \in D$ then minimum dominating set is not an efficient dominating set.

Proof:

Given that $I=\left\{I_{1}, I_{2}, \ldots \ldots, I_{n}\right\}$ is an interval family and $D=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}, k \leq n$ is a minimum dominating set.
Suppose there exists two intervals $p, q \in D$ such that any interval s_{1} intersects both $p, q \in D$.
That is, $s_{1} \in \operatorname{nbd}[p]$ and $s_{1} \in \operatorname{nbd}[q]$
Now we have to prove that D is not an efficient dominating set.
That is, we have to prove that $\left|N\left(s_{1}\right) \cap D\right| \neq 1$
Since $s_{1} \in \operatorname{nbd}[p]$ and $s_{1} \in \operatorname{nbd}[q], \quad p, q$ are neighbors of s_{1}.
This implies that $p, q \in N\left(s_{1}\right)$.
But $p, q \in D$.

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Website: www.ijircce.com
Vol. 6, Issue 6, June 2018
So $p, q \in N\left(s_{1}\right)$ and $p, q \in D$.
$\Rightarrow p, q \in N\left(s_{1}\right)$ and D
$\Rightarrow p, q \in N\left(s_{1}\right) \cap D$
$\Rightarrow\left|N\left(s_{1}\right) \cap D\right|=2 \neq 1$
Therefore D is not an efficient dominating set

Example

Interval Family 2

Interval Graph 2

In the above example $D=\{2,6,9\}$ is a minimum dominating set and $s_{1}=7, p=6$ and $q=9$.
$\left|N\left(s_{1}\right) \cap D\right|=|\{6,8,9\} \cap\{2,6,9\}|=|\{6,9\}|=2$.
Therefore $\{2,6,9\}$ is not an efficient dominating set.
B.Algorithm for finding split dominating set of a circular-arc graph

Algorithm for minimum dominating set of a circular-arc graph.
Input : Circular-arc family
Output : Minimum dominating set of circular-arc graph of given circular-arc family.
Step 1: $T=\left\{j / j \in n b d^{+}[1]\right\}$.
Step $2: P=\{j / j \in T$ and $j \in n b d[k], \forall k$ in $T\}$.
Step 3: MDS = max imum vetex in P
Step $4: L I=$ The largest interval in MDS.
Step 5 : Find NI(LI).
Step 6: If $N I(L I)<L I$ then goto Step 9.
Step 7 : Find $\max (N I(L I))$
Step $8: M D S=M D S \cup \max (N I(L I))$ goto Step 4.
Step 9 : End .
Algorithm for finding split dominating set of a circular-arc graph
Step $1:$ Count $=0$.
Step 2: $T=\left\{j / j \in n b d^{+}[1]\right\}$.
Step 3: $P=\{j / j \in T$ and $j \in n b d[k], \forall k$ in $T\}$.

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Website: www.ijircce.com
Vol. 6, Issue 6, June 2018
Step 4 : If $d^{-}(1)=1$ and there is no (u, v) such that
$u \in n b d^{-}(1) v \in n b d^{+}(1)$
Step 4.1: $S D=1$.
Else
Step 4.2 : SD $=$ The largest highest deg ree arc in P.
Step $5: a=S D$.
Step $6: c_{1}=$ nil .
Step $7: L I=$ The largest arc in $S D$.
Step 8 : If Count ≥ 2 goto step 15
Step 9 : If there is no (u, v) such that $u \in n b d^{-}(L I)$ and
$v \in n b d^{+}(L I)$.
Step 9.1 : Count $=$ Count +1 .
Step 9.2: If Count ≥ 2 goto step 15
Step 10 : Find $p=$ The Number of arcs in nbd[LI]
Endif such that there is no any intersecting arc to that arc except LI.
Step 11 : If such p exists then
Step 11.1: Count $=$ Count $+p$.
Step 11.2 : If Count ≥ 2 goto step 15
Endif.
Step 12 : Find $q=$ The Number of vertices with $d^{+}(x)=1$ or $d^{-}(x)=1, d^{+}(x)=1$ and $d^{-}(x)=1$ such that $x \in n b d^{+}[L I]$ and $x \neq f \operatorname{Adj}(L I)$ and $x=f \max (L I)$.
Step 13 : If such q exists then
Step 13.1: Count $=$ Count $+q$.
Step 13.2 : If Count ≥ 2 goto step 15
Endif.
Step 14 : If there is (u, v) such that
$u \in \operatorname{nbd}^{-}(L I)$ and $u<L I$
and $v \in n b d^{+}(L I)$.
Step 14.1: If $c_{1} \neq$ Nil and $v=f \operatorname{Adj}\left(c_{1}\right)$
Step 14.1.1 : Find $N I(L I)$.
Step 14.1.2 : If there is no (u, v) such that
$u \in n b d^{-}(N I(L I))$ and
$v \in n b d^{+}(N I(L I))$.
Step 14.1.2.1: SD $=S D \cup\{N I(L I))\}$
goto step 7
Endif

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 6, June 2018
Endif
Else
Step 14.2 : Count $=$ Count +1 .
Step 14.3 : Take largest v.
Step $14.4: S D=S D \cup\{v\}$ then goto 7 .
Step 14.5: $c_{1}=v$
Endif.
Step 15 : Find $N I(L I)$.
Step 16 : If $N I(L I) \in n b d[a]$ goto Step 21.
Step 17 : If Count < 2
Step 17.1: If there is no (u, v) such that
$u \in n b d^{-}(N I(L I))$ and $v \in n b d^{+}(N I(L I))$.
Step 17.1.1: If $d^{+}(N I(L I))=0$ then Step 17.1.1.1 : $S D=S D \cup j$, where j is fmax and adjacent to $N I(L I)$ goto step $L I$ else
Step 17.1.2: $S D=S D \cup\{N I(L I)\}$ goto step 7.
Endif.
Step 17.2 : If there is (u, v) such that

$$
\begin{aligned}
& u \in n b d^{-}(N I(L I)) \text { and } v \in n b d^{+}(N I(L I)) . \\
& \text { Step 17.2.1: } c_{1}=v . \\
& \text { Step 17.2.2 }: S D=S D \cup\{v\} \text { goto } 7 .
\end{aligned}
$$

Step $18: \max (N I(L I))$.
Step $19: S D=S D \cup\{\max (N I(L I))\}$.
Step 20: If $\max (N I(L I)) \notin \operatorname{nbd}[a]$ or Count <2
goto step 7
else goto 21.
Step 21 : End.

Theorem 1. Let G be a circular-arc graph corresponding to a circular-arc family A. Let $D=\{u, v, w\}$ be a minimum dominating set which is obtained by MDS algorithm. If the number of arcs in D such that there is no arc in $n b d^{+}(i)$, which is adjacent to an arc in $n b d^{-}(i)$ are atleast 2 , then D is also split dominating set of A. where $i \in D$

Proof : Let G be a circular-arc graph corresponding to a circular-arc family A.
Let $D=\{u, v, w\}$ be a minimum dominating set which is obtained by MDS algorithm.
Suppose that the number of arcs in D such that there is no arc in $n b d^{+}(i)$, which is adjacent to an arc in $n b d^{-}(i)$ are atleast 2.

We have to show that minimum dominating set D is also a split dominating set.
Suppose that the number of arcs in D such that there is no arc in $n b d^{+}(i)$, which is adjacent to an arc in $n b d^{-}(i)$ are 2 , say u, v, where $i \in D$.

There is no arc which intersects both $n b d^{+}(u)$ and $n b d^{-}(u)$ and also there is no arc which both $n b d^{+}(v)$ and $n b d^{-}(v)$.

International Journal of Innovative Research in Computer and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)
Website: www.ijircce.com
Vol. 6, Issue 6, June 2018
Since there is no arc which intersect both $n b d^{+}(u)$ and $n b d^{-}(u)$, the vertices in $n b d^{+}(u)$ and $n b d^{-}(u)$ are non-adjacent in the induced subgraph $\langle V-D\rangle$.

Therefore the induced subgraph $\langle V-D\rangle$ connected interval graph.

IV. CONCLUSION

This paper presents an algorithm for finding an efficient dominating set of an interval family if it exists and Also an algorithm for finding a non- split dominating set of circular-arc graph.

REFERENCES

[1]Sampathkumar, E., and Neeralagi, P.S., Neighbourhood number of a Graph, Indian J. Pure and Appl. Math., Vol.16, No.2, 1985,p. 126-132.
[2] Hedetniemi, S. T., Laskar, R. C., Bibliography on domination in graphs andsome basic definitions of domination parameters, Discrete Mathematics, Vol. 86No.1-3,1990,257-277.
[3] Teresa, W., Hedetniemi, Stephen., and Slater, Peter., Fundamentals of Domination in Graphs, Marcel Dekke, (1998a).
[4] Haynes, Teresa W., Hedetniemi, Stephen., and Slater, Peter., Domination in Graphs: Advanced Topics, Marcel Dekker, (1998b).
[5] E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Networks, Vol. 7, 1977,p. 247-261.
[6] D. W. Bange, A. E. Barkauskas, and P. J. Slater, Efficient dominating sets in graphs, in R. D. Ringeisen and F. S. Roberts (Eds.) Applications of Discrete Mathematics, pages 189-199, SIAM, Philadelphia, PA, 1988.
[7] D. W. Bange, A. E. Barkauskas, L. H. Host and P. J. Slater, Generalized domination and efficient domination in graphs, Discrete Math. 159 (1996) 1-11
[8]Kulli, V. R. and Janakiram, B., The split domination number of a graph, Graph Theory Notes of New York, New York Academy of Sciences XXXII, , 1997, p. 16-19.
[9]Maheswari, B., Nagamuni Reddy, L., and A. Sudhakaraiah, Split and Non-split dominating set of circular-arc graphs, J. curr. SciVol 3. No.2, p. 369-372, 2003.

