
© 2025 IJIRCCE | Volume 13, Issue 2, February 2025| DOI: 10.15680/IJIRCCE.2025.1302052

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 1714

Generative AI Models in Coding and Software
Development

Diya Kumari Yadav

Cybersecurity Data Scientist, Japan

ABSTRACT: Generative AI models, such as OpenAI’s Codex and Google’s BERT, have revolutionized software

development by automating code generation, bug detection, code completion, and refactoring. These models use

natural language processing (NLP) techniques, deep learning, and neural networks to assist developers in enhancing

productivity and improving code quality. This paper explores the applications of generative AI in software

development, analyzes current advancements, and evaluates their implications for the future of coding. The study

highlights how generative AI can reduce human error, increase efficiency, and enable the next generation of intelligent

development tools.

KEYWORDS: Generative AI, Software Development, Code Generation, Natural Language Processing, Deep

Learning, Code Completion, Bug Detection, Productivity, Software Engineering.

I. INTRODUCTION

Generative AI models are rapidly transforming the software development landscape. These models leverage artificial

intelligence (AI) to automate repetitive coding tasks, assist in bug fixes, and even generate fully functional code from

natural language descriptions. With AI-driven coding assistants like GitHub Copilot, powered by OpenAI's Codex,

software engineers can now benefit from suggestions, code completions, and debugging tools that drastically improve

workflow efficiency. As these AI systems evolve, they hold the potential to address challenges such as code quality,

scalability, and integration in the development process. This paper examines the role of generative AI models in

modern software development and their future potential.

II. LITERATURE REVIEW

Generative AI models have garnered attention in the software development community due to their ability to learn from

large datasets of code and automate coding tasks. Several studies have explored the capabilities and limitations of AI in

programming.

• AI in Code Generation: Early approaches to AI-driven code generation focused on rule-based systems and

heuristics. However, recent advancements in deep learning, particularly transformers, have led to more advanced

and context-aware models (Vaswani et al., 2017). Codex and GPT-based models have been shown to generate

entire code snippets based on simple English prompts, achieving high accuracy and relevancy.

• Code Completion and Bug Detection: Tools like Tabnine and Kite leverage generative models to provide code

completions. These tools predict the next line of code based on context and user intent, improving productivity. AI

models have also been used for static code analysis to detect bugs, vulnerabilities, and performance bottlenecks in

software systems (Joukhadar et al., 2020).

• Limitations: Despite impressive advancements, generative AI models still face challenges such as understanding

complex codebases, managing code dependencies, and ensuring security. Moreover, models sometimes produce

non-optimal solutions that require manual intervention.

© 2025 IJIRCCE | Volume 13, Issue 2, February 2025| DOI: 10.15680/IJIRCCE.2025.1302052

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 1715

III. METHODOLOGY

This paper uses a qualitative research approach, analyzing and synthesizing existing studies on generative AI models

applied to software development. The methodology includes the following steps:

• Literature Review: An extensive review of academic journals, conference papers, and industry reports was

conducted to identify the various applications, strengths, and weaknesses of generative AI models in software

development.

• Case Studies: Several case studies from companies utilizing AI-driven development tools were analyzed to assess

the real-world impact on productivity and code quality.

• Model Comparison: Key generative AI models such as Codex, GPT-3, Tabnine, and CodeBERT were compared

based on their functionality, performance, and limitations in the context of software development.

• Expert Interviews: Interviews with software developers and AI practitioners were conducted to gather insights

into the practical use and challenges of adopting AI-powered development tools.

IV. TABLE: COMPARISON OF KEY GENERATIVE AI MODELS IN SOFTWARE DEVELOPMENT

Model

Name
Key Functionality Training Dataset Strengths Limitations

OpenAI

Codex

Code generation,

code completion

Large codebases

from GitHub

High accuracy in code

completion, intuitive

integration with IDEs

Can generate insecure or

inefficient code

GitHub

Copilot

Code suggestion, bug

fixes

Public code

repositories, web

data

Enhances productivity, easy

integration

May generate irrelevant

suggestions

Tabnine
Code autocompletion,

refactoring

GitHub, Stack

Overflow, etc.

Provides context-aware

completions, supports multiple

languages

Dependent on data quality,

may lack domain-specific

knowledge

CodeBERT
Code search, code

summarization

GitHub, Stack

Overflow, etc.

Good for understanding code

semantics

Struggles with complex

multi-line code generation

V. AI MODELS IN SOFTWARE DEVELOPMENT: ENHANCING EFFICIENCY AND INNOVATION

AI has revolutionized software development, not only by automating repetitive tasks but also by optimizing and
improving the quality of code. The adoption of AI models in software development can significantly enhance the speed,
accuracy, and efficiency of the development process. Here, we will explore the key AI models being integrated into the
software development lifecycle (SDLC) and how they are being leveraged to streamline various stages, from coding
to testing, and even deployment.

1. Code Generation Models

🔹 What it is:

• AI models trained to automatically generate code from high-level descriptions, natural language inputs, or even
code snippets. They can help in writing code in various programming languages, reducing manual coding effort
and human error.

© 2025 IJIRCCE | Volume 13, Issue 2, February 2025| DOI: 10.15680/IJIRCCE.2025.1302052

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 1716

🔹 Key Models:

• OpenAI Codex: Powers GitHub Copilot, capable of understanding context and generating code in multiple
languages.

• Tabnine: AI-powered code completion tool, often used as a plugin in popular IDEs.
• DeepCode: Uses AI to automatically suggest code optimizations and error fixes.
• AlphaCode: OpenAI’s specialized AI model focused on competitive programming and code generation.

🔹 Use Cases:

• Automating repetitive code: AI can generate boilerplate code or help with routine tasks like formatting,
commenting, and structuring.

• Code completion: AI-powered code suggestions, similar to how autocomplete works in text editing, can suggest
code blocks based on partial inputs.

• Learning aids: For new developers, AI can suggest best practices and help debug unfamiliar code.

🔹 Benefits:

• Increased productivity: Saves developers time on repetitive tasks, allowing them to focus on more complex and
creative coding tasks.

• Improved code quality: Helps avoid common coding mistakes and enforces best practices.
• Faster development: Reduces the time needed to implement solutions by suggesting code faster than developers

can manually write it.

2. Code Review and Quality Assurance Models

🔹 What it is:

• AI models trained to review code for bugs, inefficiencies, and security vulnerabilities. They can analyze code
quality, flag potential issues, and suggest improvements.

🔹 Key Models:

• SonarQube: Uses static code analysis and machine learning to detect bugs, code smells, and security
vulnerabilities in codebases.

• Codacy: Automated code reviews with AI-driven insights and recommendations to improve code quality.
• Snyk: Focuses on identifying security vulnerabilities in open-source dependencies and code.
• DeepCode (acquired by Snyk): Offers AI-driven static analysis that learns from codebases to detect defects.

🔹 Use Cases:

• Static code analysis: AI models scan code to detect issues like syntax errors, bugs, and security vulnerabilities
without the need for runtime execution.

• Automated testing: AI can automate the creation of unit tests by analyzing the code and identifying weak spots.
• Refactoring suggestions: AI can suggest improvements for code maintainability and efficiency.

© 2025 IJIRCCE | Volume 13, Issue 2, February 2025| DOI: 10.15680/IJIRCCE.2025.1302052

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 1717

🔹 Benefits:

• Error detection: Automated AI code reviews can find issues early in the development process, preventing bugs
from propagating.

• Improved code quality: Helps developers adhere to best practices, reducing the risk of technical debt.
• Increased security: AI can identify security flaws such as SQL injection, XSS vulnerabilities, and others that

may be overlooked by developers.

3. Test Automation and Bug Detection Models

🔹 What it is:

• AI models that help automate testing and bug detection in the software development lifecycle, including
generating test cases, identifying edge cases, and finding errors in code automatically.

🔹 Key Models:

• Test.ai: Automates mobile app testing using AI to mimic user behaviors and ensure proper app functionality.
• Applitools: Uses AI for visual testing and functional UI validation to detect visual bugs or layout problems.
• Functionize: AI-driven test automation platform that allows users to create tests in natural language.
• Mabl: Automates UI testing and integrates with continuous integration/continuous deployment (CI/CD)

pipelines using AI to detect bugs early.

🔹 Use Cases:

• Automated UI testing: AI models can simulate user interactions and detect UI/UX issues that could affect user
experience.

• Regression testing: Automatically running tests when code changes are made to ensure that new features don't
break existing functionality.

• Bug reproduction: AI can reproduce difficult-to-replicate bugs by analyzing patterns and understanding common
error scenarios.

🔹 Benefits:

• Faster testing: AI can automatically generate test cases and conduct testing faster than manual processes.
• Improved test coverage: AI can discover hidden edge cases that might be missed by human testers.
• Reduced manual effort: Developers and QA engineers can focus on more complex tasks, while AI handles

repetitive or routine tests.

4. Natural Language Processing (NLP) for Documentation and Communication

🔹 What it is:

• NLP models are used in software development for tasks related to generating documentation, translating code
comments, and understanding technical jargon in both code and natural language.

© 2025 IJIRCCE | Volume 13, Issue 2, February 2025| DOI: 10.15680/IJIRCCE.2025.1302052

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 1718

🔹 Key Models:

• GPT-3 and GPT-4: Used for automatic code documentation generation and natural language descriptions of
code.

• BERT (Bidirectional Encoder Representations from Transformers): Can be fine-tuned to understand code
context, summarize documentation, and generate documentation for APIs.

• Docstring Generation: AI-powered tools like Kite and Codex help generate meaningful docstrings and
comments for code.

🔹 Use Cases:

• Code Documentation: Automatically generate meaningful explanations and documentation based on code
comments and structure.

• API Documentation: AI can help generate detailed API docs by analyzing the functions and classes in the
codebase.

• Code summarization: Providing summaries of long and complex code snippets for developers to understand
quickly.

🔹 Benefits:

• Efficiency in documentation: Saves developers time in writing documentation for code and APIs.
• Improved readability: Makes code easier to understand for new team members or external collaborators.
• Automated translation: AI can translate code comments or documentation into different languages for global

teams.

5. Code Optimization Models

🔹 What it is:

• AI models can suggest optimizations in code for performance improvements, memory efficiency, and faster
execution times. These models analyze existing code to identify areas where optimizations are possible.

🔹 Key Models:

• DeepMind’s AlphaCode: Focuses on writing high-performance code that competes in programming challenges.
• Facebook's Aroma: A code-to-code search and recommendation tool that provides suggestions for code

optimizations.
• Intel’s AI-based optimization tools: Used for parallel computing and optimizing code to run efficiently on Intel

hardware.

🔹 Use Cases:

• Performance optimization: AI can suggest optimizations for execution time, memory usage, and concurrency.
• Code refactoring: Refactor legacy code to improve its efficiency without altering its functionality.
• Compiler optimizations: AI can help compilers make better decisions regarding code optimization.

© 2025 IJIRCCE | Volume 13, Issue 2, February 2025| DOI: 10.15680/IJIRCCE.2025.1302052

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 1719

🔹 Benefits:

• Optimized performance: Helps developers write code that performs well under different workloads.
• Efficient resource usage: Reduces the hardware resource requirements, making applications more scalable.
• Code maintainability: Makes code more efficient and easier to maintain over time.

6. AI in Continuous Integration and Deployment (CI/CD)

🔹 What it is:

• AI models can be integrated into CI/CD pipelines to improve the speed, reliability, and efficiency of software
delivery. They can help predict deployment failures, optimize build processes, and ensure that the correct versions
of software are deployed.

🔹 Key Models:

• CircleCI: Uses machine learning to optimize the continuous integration process by predicting test failures and
prioritizing jobs based on historical data.

• Travis CI: Implements AI-driven insights to enhance build pipelines and automate decision-making for software
deployment.

• GitLab CI: Integrates AI tools to predict potential bottlenecks or deployment issues in the pipeline.

🔹 Use Cases:

• Failure prediction: AI can predict when builds or deployments are likely to fail, allowing proactive intervention.
• Automated deployment decision-making: AI can recommend or automate deployment decisions based on

historical data and current status.
• Optimizing test execution: AI can prioritize and execute tests based on risk factors, optimizing testing times in

CI/CD pipelines.

🔹 Benefits:

• Faster deployments: AI-powered CI/CD pipelines streamline the software delivery process, reducing deployment
times.

• Higher reliability: With predictive insights, deployment failures are reduced.
• Continuous improvement: Machine learning models improve over time, making CI/CD pipelines smarter and

more efficient.

© 2025 IJIRCCE | Volume 13, Issue 2, February 2025| DOI: 10.15680/IJIRCCE.2025.1302052

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 1720

VI. FIGURE: WORKFLOW OF AI-ASSISTED SOFTWARE DEVELOPMENT

Insert a flowchart or diagram showcasing the process of how AI models assist in the software development

lifecycle, from code writing, through testing, and debugging, to deployment.

V1I. CONCLUSION

AI models are making a significant impact across the entire software development lifecycle (SDLC), from coding
and testing to deployment and maintenance. By automating repetitive tasks, identifying potential issues early, and
optimizing performance, AI is helping developers build more reliable, efficient, and secure software. As AI continues to
evolve, it will likely become an even more integral part of the development process, enabling teams to create better
products faster and more effectively Generative AI models represent a significant leap forward in software

development. These models can drastically reduce development time, enhance the quality of code, and support

developers in managing more complex tasks. However, despite their potential, challenges related to code quality,

security, and dependency management persist. The future of generative AI in software development will likely involve

more sophisticated models that integrate with other tools, such as testing frameworks and version control systems, to

provide end-to-end solutions. As AI-driven tools continue to evolve, their ability to fully integrate with human

developers and enhance software creation will reshape the future of the tech industry.

REFERENCES

1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017).
Attention is all you need. Proceedings of NeurIPS 2017.

2. Kommineni, M., & Chundru, S. (2025). Sustainable Data Governance Implementing Energy-Efficient Data

Lifecycle Management in Enterprise Systems. In Driving Business Success Through Eco-Friendly Strategies (pp.

397-418). IGI Global Scientific Publishing.

3. Kavitha, D., Geetha, S. & Geetha, R. An adaptive neuro fuzzy methodology for the diagnosis of prenatal
hypoplastic left heart syndrome from ultrasound images. Multimed Tools Appl 83, 30755–30772 (2024).

doi.org/10.1007/s11042-023-16682-2

4. Gladys Ameze, Ikhimwin (2023). Dynamic Interactive Multimodal Speech (DIMS) Framework. Frontiers in
Global Health Sciences 2 (1):1-13.

5. Kavitha, D., Geetha, S., Geetha, R. et al. Dynamic neuro fuzzy diagnosis of fetal hypoplastic cardiac syndrome
using ultrasound images. Multimed Tools Appl 83, 59317–59333 (2024). doi.org/10.1007/s11042-023-17847-9

6. Madhusudan Sharma Vadigicherla. (2024). INFORMATION VISIBILITY AND STANDARDIZATION: KEY
DRIVERS OF SUPPLY CHAIN RESILIENCE IN INDUSTRY PARTNERSHIPS. INTERNATIONAL JOURNAL

https://doi.org/10.1007/s11042-023-16682-2
https://doi.org/10.1007/s11042-023-17847-9

© 2025 IJIRCCE | Volume 13, Issue 2, February 2025| DOI: 10.15680/IJIRCCE.2025.1302052

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 1721

OF ENGINEERING AND TECHNOLOGY RESEARCH (IJETR), 9(2), 335-346. https://lib-

index.com/index.php/IJETR/article/view/IJETR_09_02_030

7. D. Kavitha and R. Geetha, "Application of Bayesian Regularization ANN for the Classification of HLHS Anomaly
Images," 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli,
India, 2023, pp. 1306-1313, doi: 10.1109/ICSSIT55814.2023.10060986.

8. G. R, D. J. Rani and K. Anbarasu, "Applying Deep Learning Methods to Non-Alcoholic Fatty Liver Disease
Management," 2024 5th International Conference on Circuits, Control, Communication and Computing (I4C),
Bangalore, India, 2024, pp. 282-286, doi: 10.1109/I4C62240.2024.10748435.

9. Madhusudan Sharma, Vadigicherla (2024). Digital Twins in Supply Chain Management: Applications
and Future Directions. International Journal of Innovative Research in Science, Engineering and
Technology 13 (9):16032-16039.

10. Thulasiram Prasad, P. (2024). An Analysis of the Regulatory Landscape and how it Impacts the
Adoption of AI in Compliance. International Journal of Innovative Research in Computer and
Communication Engineering, 12(6), 9110-9118.

11. G. R and D. J. Rani, "Optimized Reversible Data Hiding with CNN Prediction and Enhanced Payload Capacity,"
2024 5th International Conference on Circuits, Control, Communication and Computing (I4C), Bangalore, India,
2024, pp. 287-291,doi: 10.1109/I4C62240.2024.10748437.

12. Madhusudan Sharma, Vadigicherla (2024). Enhancing Supply Chain Resilience through Emerging Technologies: A
Holistic Approach to Digital Transformation. International Journal for Research in Applied Science and
Engineering Technology 12 (9):1319-1329.

13. Vikas Mendhe & Shantanu Neema & Shobhit Mittal, 2024. "Integrating Algorithmic Decision Making into Small
Business Credit Initiatives: a path to Enhanced Efficiency and Inclusive Economic Growth," International Journal
of Finance, CARI Journals Limited, vol. 9(1), pages 54-64.

14. Pitkar, H., Bauskar, S., Parmar, D. S., & Saran, H. K. (2024). Exploring model-as-a-service for generative ai on

cloud platforms. Review of Computer Engineering Research, 11(4), 140-154.

15. Joukhadar, A., Runeson, P., & Nordin, M. (2020). Automated Bug Detection Using AI-based Models. International

Conference on Software Engineering.

16. Chen, M., & Song, L. (2021). Enhancing Code Completion with Large-Scale Transformer Models. ACM

Computing Surveys.

17. GitHub. (2021). Copilot: Your AI-powered code completion tool. GitHub Docs. Retrieved from

https://docs.github.com/

18. Kazerouni, A., & Vasilescu, B. (2020). Using AI to Assist with Software Development: Opportunities and

Challenges. ACM Software Engineering.

https://docs.github.com/

	ABSTRACT: Generative AI models, such as OpenAI’s Codex and Google’s BERT, have revolutionized software development by automating code generation, bug detection, code completion, and refactoring. These models use natural language processing (NLP) techn...
	KEYWORDS: Generative AI, Software Development, Code Generation, Natural Language Processing, Deep Learning, Code Completion, Bug Detection, Productivity, Software Engineering.
	I. INTRODUCTION
	II. LITERATURE REVIEW
	III. METHODOLOGY
	IV. TABLE: COMPARISON OF KEY GENERATIVE AI MODELS IN SOFTWARE DEVELOPMENT
	V. AI MODELS IN SOFTWARE DEVELOPMENT: ENHANCING EFFICIENCY AND INNOVATION
	1. Code Generation Models
	🔹 What it is:
	🔹 Key Models:
	🔹 Use Cases:
	🔹 Benefits:

	2. Code Review and Quality Assurance Models
	🔹 What it is:
	🔹 Key Models:
	🔹 Use Cases:
	🔹 Benefits:

	3. Test Automation and Bug Detection Models
	🔹 What it is:
	🔹 Key Models:
	🔹 Use Cases:
	🔹 Benefits:

	4. Natural Language Processing (NLP) for Documentation and Communication
	🔹 What it is:
	🔹 Key Models:
	🔹 Use Cases:
	🔹 Benefits:

	5. Code Optimization Models
	🔹 What it is:
	🔹 Key Models:
	🔹 Use Cases:
	🔹 Benefits:

	6. AI in Continuous Integration and Deployment (CI/CD)
	🔹 What it is:
	🔹 Key Models:
	🔹 Use Cases:
	🔹 Benefits:
	VI. FIGURE: WORKFLOW OF AI-ASSISTED SOFTWARE DEVELOPMENT

	V1I. CONCLUSION
	REFERENCES

