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ABSTRACT: The correlation decreases a bit when only meteorological data are used as input (Approach II). There are 

significant decreases in correlation values in Approach III, and these results are not acceptable. This application did not 

use meteorological variables at a future time step due to difficulties associated with their accurate estimation. If one 

could obtain a reasonable estimate of these variables, it is expected that results would improve significantly. The SVM 

results are also compared with a commonly used learning tool, the Artificial Neural Network (ANN) to validate the 

capabilities of SVM. It has been shown that the SVM performed better than ANN in all cases. The application 

presented above shows prospects for the use of statistical learning theory to predict highly complex processes that are 

difficult to understand and simulate using physics-based approaches, soil moisture being one of them. The SVM 

approach also has a strong mathematical basis and can be used to address other hydrologic phenomena. 
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I. INTRODUCTION 

 

Quantitative assessment of soil properties using visible near-infrared shortwave infrared (Vis-NIR-SWIR) 

spectroscopy has been demonstrated as a fast and non-destructive method. Over the past 30 years, numerous soil 

physical and chemical properties, such as soil texture, soil organic carbon (SOC), cationic exchange capacity (CEC), 

total nitrogen (N) and exchangeable potassium (K), have been investigated using the spectroscopic approach based on 

various multivariate statistics and machine learning approaches, and outcomes were applied in soil contamination, soil 

degradation, environmental monitoring and precision agriculture. As one of the attractive advantages, soil spectra can 

be recorded at points or by imaging from different platforms. The technique is mainly used in the laboratory, where soil 

samples are prepared and measured under controlled conditions, and it can be considered as an alternative to traditional 

analytical techniques. Portable Vis-NIR-SWIR spectrometers allow measurements operated directly in situ. Although 

the estimation accuracy is lower when compared to results achieved in the laboratory due to uncontrollable 

environmental factors in the field, in situ proximal sensing improves the efficiency of soil data collection by avoiding 

tedious sampling and preparation procedures. Sensors can also operate from high above, termed as air- or spaceborne 

imaging spectroscopy. However, there are still some limitations with respect to the application of imaging spectroscopy 

to the field of soil analysis, especially when vegetation is present. They have already shown the potential to map and 

quantify soil properties. With upcoming spaceborne sensors, like the Environmental Mapping and Analysis Program 

(EnMAP) from Germany and the Hyperspectral Infrared Imager (HyspIRI) from the USA, imaging spectroscopy 

provides the opportunity to map soil properties at regional and global scales at comparatively low costs. 

 

Feature extraction has been proved to be successful in imaging-spectroscopy classification. The high-dimensional 

spectral data can be projected to a lower dimensional space with feature extraction methods, without actually losing 

significant information. Reduced features may increase the separation between spectrally similar classes and the 

classification model can perform well with a reduced number of features. In soil spectroscopy, a common approach is 

principal component analysis (PCA). In, PCA was used to reduce the Vis-NIR-SWIR data with more than 2000 

wavelengths to a few components, the first component of which accounting for the largest variance. Also, soil 

information contents of the spectra consisted of PCA components, and a predictive spatial model was developed across 

Australia. Effective information can also be extracted with wavelet analysis. It can substantially reduce the factors 
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outside the parameters to the spectrum directly or indirectly. PCA and local linear embedding (LLE) have, in a 

comparative way, been exploited for soil spectral distance and similarity in projected space. LLE is a nonlinear 

dimensionality reduction method. It can identify the underlying structure of a manifold, while PCA maps faraway data 

points to nearby points in the plane. The results indicate that the distances computed in the raw space have 

comparatively lower performance than the ones computed in low reduced spaces. Methods using PCA and LLE with 

Mahalanobis distance outperformed other approaches. It can be seen that an effective feature extraction method has the 

potential to explore the intrinsic structure of spectra, and does not only reduce the data redundancy but also improves 

estimation accuracy. 

 

 
 

Fig 1: Work Flow Dimensionlity For Moisture Retrieval 

 

Knowing how to effectively extract features from the spectra is crucial for a successful soil-spectral quantitative model. 

Studies focused on feature extraction from soil Vis-NIR-SWIR spectra are still limited. In this paper, we adopt a novel 

approach of fractal features based on fractal geometry using variation estimators with the different power indices 0.5, 

1.0 and 2.0, which can be termed as rodogram, madogram and variogram, respectively. The concept of fractal 

dimension was introduced by to reduce the dimensionality of imaging spectroscopy data. Kriti Mukherjee proposed a 

method to generate multiple fractal-based features from imaging spectroscopy data and then further compared the 

performance of fractal-based dimensionality reduction using Sevcik’s, power spectrum and variogram methods with 

conventional methods like PCA, minimum noise fraction (MNF), independent component analysis (ICA) and decision 

boundary feature extraction (DBFE) methods. They concluded that the classification accuracy is similar but the 

computational complexity is reduced. The aims of the present study are to explore fractal-based feature extraction from 

soil spectra and to examine its performance on the estimation of SOC, N and pH contents with soil Vis-NIR-SWIR 

diffuse reflectance spectra. Features generated by the fractal method were compared to PCA-transformed components, 

and then these two kinds of features were combined to quantify soil properties using a gradient-boosting regression 

method. The proposed method is further compared with partial least squares (PLS) regression, which is a frequently 

adopted method for the quantification of soil properties. 

 

II. BACKGROUND OF WORK 

 

The soil water storage capacity is critical for soil management as it drives crop production, soil carbon sequestration, 

and soil quality and health. It depends on soil textural class, depth, land-use and soil management practices; therefore, 

the complexity strongly limits its estimation on a large scale with conventional-process-based approaches. In this paper, 

a machine learning approach is proposed to build the profile of the soil water storage capacity. A neural network is 

designed to estimate the soil moisture from the meteorology data input. By taking the soil moisture as a proxy in the 

modelling, the training captures those impact factors of soil water storage capacity and their nonlinear interaction 

implicitly without knowing the underlying soil hydrologic processes. An internal vector of the proposed neural network 

assimilates the soil moisture response to meteorological conditions and is regulated as the profile of the soil water 

storage capacity. The proposed approach is data-driven. Since the low-cost soil moisture sensors have made soil 
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moisture monitoring simple and the meteorology data are easy to obtain, the proposed approach enables a convenient 

way of estimating soil water storage capacity in a high sampling resolution and at a large scale. Moreover, an average 

root mean squared deviation at 0.0307m3/m3 can be achieved in the soil moisture estimation; hence, the trained model 

can be deployed as an alternative to the expensive sensor networks for continuous soil moisture monitoring. The 

proposed approach innovatively represents the soil water storage capacity as a vector profile rather than a single value 

indicator. Compared with the single value indicator, which is common in hydrology, a multidimensional vector can 

encode more information and thus has a more powerful representation. This can be seen in the anomaly detection 

demonstrated in the paper, where subtle differences in soil water storage capacity among the sensor sites can be 

captured even though these sensors are installed on the same grassland. Another merit of vector representation is that 

advanced numeric methods can be applied to soil analysis. This paper demonstrates such an advantage by clustering 

sensor sites into groups with the unsupervised K-means clustering on the profile vectors which encapsulate soil 

characteristics and land properties of each sensor site implicitly. 

 

Soil moisture represents the water content of the soil, which is strongly affected by the storage and movement of water 

in the soil. Several indicators have been proposed to infer the ability of holding water in soil such as saturated water 

content and field capacity. However, these indicators are static measurements of the amount of water in the soil at a 

specific time. They do not take into account the variability in soil moisture and the changes in soil properties or climatic 

conditions over time. The same weaknesses are also shared in a soil water characteristic curve (SWCC), which 

represents a single snapshot of the soil’s water-holding capacity at a given point in time. Water storage capacity of soil, 

on the other hand, is not limited to a specific point in time. It describes the amount of water that a soil can hold under 

various moisture levels over a range of time periods. It takes soil dynamics into account as well as environmental 

factors, such as precipitation, evapotranspiration, etc.; thus, the modelling of water storage capacity becomes very 

complicated and difficult. For example, the space between soil particles can be filled with water as well as air, the 

physicochemical interactions between soil and water can alter the density of soil water, and the relationship between 

soil moisture and runoff responses can be nonlinear and is attributed to many factors such as topography, soil 

properties, vegetation, etc. Many methods have been proposed to model the water storage capacity of soil from various 

perspectives, such as pore geometry, soil physical properties, initial wetness conditions, soil texture and organic matter, 

hydrological soil properties, etc. However, it is impossible to take all impact factors explicitly into account in a model. 

 

Recently, the data-driven approach, which infers soil information directly from the data without considering the 

underlying physical processes, has become popular. Following this trend, in this paper, a neural network approach is 

proposed to build a profile of soil water storage capacity, without knowing the principle of water conservation or the 

governing processes such as infiltration or evapotranspiration, etc., a priori, but learning them entirely from the data 

supplied. The proposed neural network is based on LSTM, a type of recurrent neural network capable of capturing 

highly nonlinear relationships and handling long-term dependencies in sequential data. The neural network takes the 

meteorology data as predictor variables and the in situ soil moisture as target variables. Seven months of in situ soil 

moisture data from 10 capacitance-based sensors deployed on 10 experimental sites, together with corresponding 

meteorology data, are collected to build the models. The cell state vectors in the built LSTM models are then extracted 

out as the profiles of the soil water storage capacity for the 10 sensor sites. Comparing to single value indicators, a 

multidimensional vector has the ability to encode the soil responses to various impact factors over time and thus is a 

more powerful representation. The profile vector encapsulates soil properties and dynamics implicitly, and thus 

provides a convenient tool for further soil analysis with numerical methods, which will be demonstrated in this paper 

for anomaly detection and categorization. 

 

III. METHODS 

 

The proposed model outputs a sequence of predicted soil moisture values. These values are compared to in situ soil 

moisture measurements which are used as the ground truth in a mean squared error (MSE) loss function during the 

model training. The training is optimized with the stochastic gradient descent method under L2 regularization. The 

initial states ℎ0 and 𝐶0 in LSTM are generally set to zeros for each training sequence in every training epoch. However, 

our neural network is designed to learn the long-term mechanism of interaction between the meteorology data and soil 

moisture response implicitly, where the cell state C is modelled as the profile of the water storage capacity in the soil 

and it is nonlinearly affected by many factors, such as vegetation, soil properties, land surface topography, etc. 

Therefore, in the training, the cell state C starts from a vector with all zeros but keeps updating with every training 
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sequence for all the training epochs, such that the cell state can be continuously regulated by many hydrological factors 

implicitly through the training data. Algorithm 1 shows how the training updates the cell state of our model. 

To train a based model, 10% data are sampled from each dataset without overlapping each other and are pooled 

together to form the training set as well as the validation and testing sets. After removing a few corrupted sequences, 

the pooled dataset contains 805 sequences for training, 258 sequences in validation, and 368 sequences for testing. 

 

 
 

Fig 2: Soil health in agricultural ecosystems 

 

The soil moisture response following rainfall events is unique for each location. This could confuse the learning during 

the base model training. However, all 10 sensors are installed on grassland. The in situ soil moisture readings from 

different sites should reveal some common responses of grassland to precipitation, condensation, and evaporation. The 

training, therefore, can still converge to a certain level, and some common characteristics of grassland would be 

encoded in the trained model. 

 

The value of every point on a plot line is a Euclidean distance between two profile vectors which are from the same 

model training but 10 epochs apart. Along with the training, it can be seen that for all the sensor sites, the profile 

differences become small and the vectors become stable, even though there is still a bit of oscillation near the end of 

each model training. The cell state vector in our model is trained without explicit knowledge of the hydrological 

processes but is continuously regulated by the data with hydrological information embedded. When the cell state vector 

becomes stable in the training, it is deemed that the behaviour of the hydrological system has been deduced from the 

data and captured in the cell state vector. Our method estimates soil moisture, an indicator of the quantity of water 

existing in soil, from readily observed meteorology data; we, therefore, believe that the cell state vector of the model 

has learned the water storage capacity of the soil from the training and the vector can be used to characterize the soil in 

the numerical analysis, as demonstrated in the rest of this section. 

 

IV. RESULT ANALYSIS 

 

Soil texture has been found to play a crucial role in ecosystem health, agricultural production, and sustainable farmland 

management. Among the diverse soil properties, the texture plays a pivotal role in decision-making for the planning 

and management of agricultural land. The conventional approaches with agriculture sensors and statistical analysis 

were found to be non-robust, time-consuming, non-instantaneous, and expensive. However, with advanced AI 

processing tools and ML applications, new avenues for texture prediction and revolutionized soil management practices 

have been opened. 
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Conventional soil texture analysis is performed by sieving, sedimentation, and other hydrometric laboratory methods. 

Later, the results from these experiments are statistically analyzed, and conclusions are drawn manually. The 

complexity of this analysis can be presumed from the variable soil textures and environmental attributes that affect it. 

This creates heaps of data that cannot be translated into a single conclusion for correct decision-making. Therefore, all 

of these manual dealings require skilled professionals, a significant amount of time, and specialized instruments. 

However, AI tools are a promising set of alternatives for these limitations that otherwise confine soil management. 

 

 
 

Fig 3: Result Analysis Soil Moisture 

 

AI techniques that include machine learning (ML) and deep learning (DL) are potentially remarkable for accurate and 

efficient soil texture predictions. The inputs utilized by these algorithms are compositional, spectral, and geographical 

data sets that can be in non-numerical form. AI processing of these data sets mainly reduces the cost, time, and labor 

involved compared with conventional laboratory protocols. The complexity of relationships among the data sets is 

quickly learned and applied using the ML and DL algorithms. This is not the only scale available with this technology; 

cloud systems and mobile applications are another step forward. The wider scalability of AI enables farmers and land 

managers to access and process land management operations with ease. 

 

V. CONCLUSIONS 

 

Data acquisition with Vis-NIR-SWIR spectroscopy is relatively easy, and a wide range of soil properties can be 

analysed within a comparatively short time with relatively little effort for sample preparation. Soil spectroscopy has 

recently been identified as a method that has the potential to rapidly estimate soil properties. Many soil-spectral 

libraries are already built at regional, continental or even global scales. Various multivariate statistics methods have 

been successfully adopted to explore the relationship between soil spectra and soil physical/chemical properties. 

However, few studies are focused on feature extraction from measured soil spectra, which is also crucial to correlating 

spectra with soil properties. 
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