

(An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 10, October 2015

Integration of Feed Forward Back Propagation Neural Network (FFBPNN) and Curve Expert software to predict rice production in Tamilnadu, India

S.Arun Balaji¹, K.Baskaran²

PhD Scholar, Dept. of Computer Science & Engineering, Karpagam University, Coimbatore, Tamilnadu, India¹

PhD Research Director & Associate Professor, Dept. of CSE, Government College of Technology, Coimbatore, India²

ABSTRACT: The study reported the development of FFBPNN architecture and its corresponding software to predict the rice production data in different districts of Tamilnadu, India. In order to get high accuracy of prediction, the curve expert software was integrated into the FFBPNN software. The curve fitting software developed the best fitting models among the 30 different linear and non linear models for Kuruvai, Samba and Kodai seasons of different districts of Tamilnadu. The test data and training data was fed as input to the FFBPNN software, it was found that the there was zero error between the observed data and the predicted data. The RMSE is zero and the ARE is also zero at 18th iteration. The curve expert produced the best fitting model to different districts during the three seasons. It was found that the best predicted models and their predicted data gives 1 to 9% higher than the observed data. It is due to natural increase in area of cultivation for every year or it may be improvement in rice production technology.

KEYWORDS: Neural Network, Curve Expert, Prediction of rice production, best fitting models.

I. INTRODUCTION

The most striking feature of FFBPNN for predicting the pattern of behavior is data-driven self-adaptive propagation method for the prediction of data. FFBPNN has the ability to learn from the past experience from the supplied data than from the theoretical laws. The authors [1] discussed the building up of the FFBPNN architecture to predict data and reported that the FFBPNN software accurately predict the observed pattern with the threshold value of 10⁻⁹. The authors [2] discussed the FFBPNN architecture to predict data coupled with Rice Data Simulator, which is software to develop multiple linear regression models. It is planned that more accuracy of prediction can be obtained by incorporating the efficient curve expert software, which comprises of 30 different linear and non linear models. The main focus of the paper is to give brief discussion of developing FFBPNN architecture and the integration of Curve Expert Software to develop the best fitting models and to predict the data pertaining to area of rice cultivation and rice production in different districts of Tamilnadu, which are useful to policy makers of Government of Tamilnadu. The overall objective of the present research is the integration of FFBPNN and Curve Expert software to provide solution of the best fitting linear and nonlinear regression models for prediction of area of rice cultivation and rice production in different districts of Tamilnadu, which are useful to policy makers of Government of Tamilnadu. The overall objective of the present research is the integration of FFBPNN and Curve Expert software to provide solution of the best fitting linear and nonlinear regression models for prediction of area of rice cultivation and rice production in different districts of Tamilnadu for three seasons using the five years of data captured from 2005-06 to 2009-10. The specific objectives of this research are:

- 1 To develop the FFBPNN software to predict the area of rice cultivation and rice production in different districts of Tamilnadu for Kuruvai, Samba and Kodai seasons.
- 2 To develop the best fitting linear and nonlinear regression models between the years and FFBPNN method of predicted area of rice cultivation / rice production using curve expert software.
- 3 To predict the area of rice cultivation and rice production from the best fitting linear and nonlinear regression models developed.
- 4 To compute the relative error (RE) between the FFBPNN method of prediction and the best fitting linear and nonlinear regression models and its analysis.

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

II. RELATED WORK

According to [3], the Multilayered Feed Forward Artificial Neural Network (MLFANN) has predicted the maize yield quite close to the actual values of maize yield and concluded that artificial neural network methodology is successful in describing the given data. According to [4], the ANN model was compared to stepwise multiple regression model to predict rice production in Phimai district of Thailand. It was found that the prediction under ANN is better than stepwise multiple regression model. ANN are one of the best solutions to predict crop yield because ANN plays a crucial role in precision agricultural and its impacts towards crop yield must be conducted to ensure sustainability of future food needs according to [5]. According to [6], an ANN model was used in prediction of cotton leaf area. Best fitting results were obtained with 4 input nodes. ANN model performance was tested successfully to describe the relationship between measured and predicted cotton leaf area and coefficient of determination (R2) was 0.9232. The developed ANN model produced satisfied correlation between measured and predicted value and minimum inspection error. Thus, the model can be used in easy way for agronomists and plant scientists in cotton crop research. ANN models are more accurate technique for crop monitoring and yield forecasting. With information of the soil types, cropping system, crop management should broaden the usefulness, and possibly increase the predictive capabilities of ANN-based yield prediction in mountain areas. It was reported by [7]. The researcher [8] stated that regression and ANN prediction models have been developed with eight most dominating parameters which have found most significant effect on livelihood security. The comparison study of these two models have indicated that, the statistical yield predicted through ANN models performed better than that predicted through regression models. The study has recommended the use of such models for improvement of similar degraded watershed for future reference. According to [9], Artificial Neural Network is used to predict the crop yield based on various parameters like pH, N, P and K. By calculating deficiency of N, P and K, the system suggests the fertilizer recommendation. This system is useful for farmers who are economically weak and can't afford the lab soil test. The report from [10] stated that ANN and Adaptive Neuro-Fuzzy Inference System (ANFIS) techniques could be used in many fields including scheduling, design, and various other analyses. These models can also be integrated into modules for application in general economic models. Prediction is making claims about something that will happen, often based on information from past and from current state.

III. METHODOLOGY

3.1 Variables used

Tamilnadu state of India has 31 districts. Each district cultivates rice in three seasons namely Kuruvai, Samba and Kodai. The area of rice cultivated in hectares in three seasons of each district and the corresponding rice production in tonnes for the 5 years starting from 2005-06 to 2009-10 are selected as data variables. Hence the total variables selected were 2 variables viz: area and production multiplied by 3 seasons gives 6 variables.

3.2 Collection of data

The published data by the Government of Tamil Nadu was used. Training data was collected from the area and rice production of 31 districts for the year 2005-06. The test data of the area of cultivation and rice production was collected for the remaining years starting from 2006-07 to 2009-10 for all the 31 districts of the state.

3.3 Pre-processing of data

The training and test data collected had some missing data marked with 0 values. If the study uses these 0 values in computation, this 0 may divide any real number leading to infinity condition. Computer cannot compute such infinity conditions. There are many data cleaning techniques available for data pre-processing. The present study adopted the use of a global constant 0.01 in place of 0 in training and test data. This replacement avoids the computational problem of avoiding infinity during computations.

3.4 Design of FFBPNN Architecture

FFBPNN is an interconnected neurons used for processing the data for prediction. The neurons are connected in three layers namely, input layer, hidden layer and the output layer. Input in to a neuron is the weighted sum of outputs from the nodes connected to it. The output from a neuron is the weighed sum of inputs into the neuron. The ability of data prediction depends upon the weights obtained by the process of supervised learning. The supervised learning is adopted

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

by computing the Root Mean Squared Error (RMSE) and Absolute Relative Error (ARE) between the predicted and observed data within a threshold value of ARE. The basic element of a neural network is shown in fig. 1 below.

Fig. 1 A simple Feed Forward Back Propagation Neural Network

3.4.1 **Input layer**

The input layer converts the area of rice cultivation in hectare and the rice production in tonnes for three seasons into sigmoid values between 0 to 1 using the sigmoid activation function. The sigmoid values were fed to the hidden layer where the data is multiplied by the assumed initial weights, which is varying from 0 to 1.

3.4.1.1 Sigmoid Function

A sigmoid function is a mathematical function having an "S" shape (sigmoid curve). Sigmoid function is given by the following formula:

$$S(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid functions are very similar to the input-output relationships of biological neurons, although not exactly the same

3.4.2 **Hidden layer**

The function of the hidden layer is to compute the summation of the sigmoid values and the weights coming from each nodes of the input layer and produces something that the output layer can use. An assumed bias is also added to the summation to prevent negative values. The equation for summation is given below:

$Yi = \sum Xi Wij + Bias (+1)$

eq. (2) Where Y_i is the summation of each node X_{ii} with corresponding initially assumed weights W_i plus bias. Bias used is +1. Bias is added to the summation to make the summation a number other than 0. It is essential to avoid 0 so that subsequent computations may not face division by zero (infinity).

eq. (1)

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

3.4.3 Root Mean Squared Error (RMSE)

The performance of FFBPNN is studied by updating the weights during back propagation. The effect of iterations on error reduction between the observed data and the predicted data is measured using the Root Mean Squared Error (RMSE). The formula for the RMSE is given below:

Root Mean Squared Error (RMSE) =
$$\sqrt{\frac{1}{N}} \sum_{i=1}^{N} (t_i - y_i)^2$$
 eq. (3)

Where

N is the total number of data points,

t_i is the observed data and

y_{ii} is the model's predicted datat.

3.4.4 Absolute Relative Error (ARE)

ARE is used with supervised learning. It is the technique of comparing the FFBPNN's output to the observed data. The error is used to train the system for better performance. The error values can be used to directly adjust the weights, using an algorithm such as the back propagation algorithm. If the system output is FFBPNN output and the desired system output is known observed data supplied. The ARE can be computed using the formula given below:

Absolute Relative Error =
$$\frac{Observed Data - FFBPNN predicted data}{Observed Data}$$
 eq. (4)

Compare the ARE with threshold value of 10^{-9} . If the error was greater than threshold value then calculate the updated weights and compute the summation using back propagation. This process is repeated until error is zero.

3.4.5 Output layer

The hidden layer computes the summation by multiplying each input with its corresponding weights and adds them together with the bias and applies the sigmoid action function. The output layer gets its input from the hidden layer. It also computes ARE and test it with the prescribed threshold value to improve the accuracy of prediction. If ARE \geq threshold value then the updating of weights and the back propagation starts from the beginning else the desired accuracy of prediction is achieved and it can be printed.

3.4.6 Development of FFBPNN software and data processing

A computer program is written in turbo C^{++} language. It reads the test data from a file. It also reads the initial weights for the six neurons. The initial feed forward network is carried out. The summations in the hidden layer forms the input to the output layer after passing through the sigmoid activation function. The predicted output was computed. ARE was computed and the checking of ARE with threshold was also carried out. According to the conditions laid out, back propagation of network continued until the predicted data has desired accuracy and it was printed in a output file. The program was executed for the test data of 2005-06 and the training set of data for the years 2006-07 to 2009-10.

3.5 Development of the best fitting models using Curve Expert software

Curve Expert 1.3 is a comprehensive curve fitting system for Windows. It was developed by Daniel Hyams and is available as a shareware for all users without any license. XY data can be modelled using a toolbox of linear regression models, nonlinear regression models, interpolation, or splines. Over 30 models are built-in, but custom regression models may also be defined by the user. Full-featured graphing capability allows thorough examination of the curve fit. The process of finding the best fit can be automated by letting Curve Expert compare the given data to each model to choose the best curve. This program was designed to be simple but powerful, so that all users can obtain a model for their data quickly and easily. Documentation is provided in the form of a Windows help file. The on-line manual of the software is complete and does not need the supplement of a printed copy. Data files were created by keeping the years of rice cultivation of a district as x and the area of cultivation in hectare / rice production in tonnes as y. Each district

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

has 6 data files. They are 1) Years (x) and Area of cultivation for Kuruvai season (y) for a district 2) Years (x) and Area of cultivation for Samba season (y) for a district 3) Years (x) and Area of cultivation for Kodai season (y) for a district 4) Years (x) and Rice Production for Kuruvai season (y) for a district 5) Years (x) and Rice Production for Samba season (y) for a district 5) Years (x) and Rice Production for Samba season (y) for a district 5) Years (x) and Rice Production for Samba season (y) for a district and 6) Years (x) and Rice Production for Kodai season (y) for a district. There are 31 districts which gives rise to 31 x 6 = 186 data files.

When data files created were processed to get the best fitting model, it fits more than 30 linear and nonlinear regression models including the built-in user defined custom regression models defined by the user. The package gives the complete details like the ranks of the best fitting models. The first ranked best fit was recorded with the type of model, its coefficients, covariance matrix, standard error and the correlation coefficient. The different best fitted models for the research data of the author is explained below:

3.5.1 Linear Fit

Linear regression is an approach for modelling the relationship between an independent variable (year of rice production) as x and the dependent variable (area of rice cultivation / rice production) as y. It is found that for each unit increase in the value of x, the conditional expectation of y increases by b units. The correlation coefficient varies from 0 to 1. If the correlation coefficient is close to 1 then it is the best fit else if the correlation coefficient is nearer to 0 then it may be poor fit.

y = a + bx

eq. (5)

eq. (6)

eq. (7)

eq. (8)

Where

x- Years of rice cultivation in a district y- Area of rice cultivation or rice production in a district a and b are coefficient data

3.5.2 Quadratic Fit

Quadratic fitting is an approach for modelling the relationship between an independent variable (years of rice production) as x and the dependent variable (area of rice cultivation / rice production) as y. It is found that for each unit increase in the value of x by (x+1), the conditional expectation of y increases by $b(x+1) + c(x+1)^2$ units. It means when x increases then y increases in a non linear form.

 $y = a + bx + cx^{2}$ Where x- Years of rice cultivation in a district

y– Area of rice cultivation or rice production in a district

a, b and c are coefficient data

3.5.3 Saturation Growth-Rate Model

A saturation-growth-rate equation is a nonlinear model that is sometimes fitted to data. The form of the Saturation Growth-Rate Equation:

 $y = \frac{ax}{(b+x)}$ Where x Vers of rice cultivation in a district

x– Years of rice cultivation in a district y– Area of rice cultivation or rice production in a district a and b are constant coefficients.

3.5.4 Logarithmic Fit

The logarithmic fit calculates the least squares fit through points by using the following equation: y = a + b * log(x)

DOI: 10.15680/IJIRCCE.2015. 0310084

Copyright to IJIRCCE

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

Where

x-Years of rice cultivation in a district

y- Area of rice cultivation or rice production in a district

a and b are constant coefficients.

log – natural logarithm function

This model requires that x>0 for all data points. This will result in better accuracy of the calculation compared to using linear regression.

3.5.5 Exponential Fit

The exponential fit calculates the least squares fit through points by using the following equation:

 $y = ae^{bx}$

Where

x- Years of rice cultivation in a district

y- Area of rice cultivation or rice production in a district

a and b are constant coefficients.

e-the base of the natural logarithm

Exponential models are commonly used in biological applications, for example, for exponential growth of crop production. It is a nonlinear regression method and result in better accuracy than linear regression method.

3.5.6 Gaussian Model

The Gaussian curve fit calculates a bell curve suitable to describe normal distributions using the following equation:

 $y = ae^{\frac{-(b-x)^2}{2c^2}}$

Where

x-Years of rice cultivation in a district

v- Area of rice cultivation or rice production in a district

a,b and c are constant coefficients.

e-the base of the natural logarithm

3.5.7 Hyperbolic Fit

A hyperbolic curve has a discontinuity at certain x value. This prevents a "traditional" curve fitting of the entire curve, but it is easily fit the curve if there is a transformation of the equation into a linear version, solve for the linearized coefficients, and then use those coefficients to fit the non-linear data. The general format of the hyperbolic equation is given below:

$$y = a + \frac{b}{x}$$

Where

x– Years of rice cultivation in a district

y- Area of rice cultivation or rice production in a district

a and b c are constant coefficients.

Prediction of the area of rice cultivation and rice production from the best fitting models 3.6

The prediction of area of rice cultivation in hectare is obtained by inserting x = (2005, 2006, 2007, 2008 and 2009) in the best fitted area model developed for different districts in three seasons. Similarly, the prediction of rice production in tonnes is obtained by inserting x = (2005, 2006, 2007, 2008 and 2009) in the best fitted production model developed for different districts in three seasons.

3.7 Relative Error (RE) between FFBPNN predicted data and the predicted data from the best fitted model

The FFBPNN method of predicted data is compared with the predicted data from the best fitted model for area of cultivation / rice production for different districts during the Kuruvai, Samba and Kodai seasons for the years 2005-06

eq. (9)

eq. (10)

eq. (11)

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

to 2009-10. The mean relative errors for the five years were also computed. The relative error can be computed using the formula given below:

Relative Error = $\frac{\text{FFBPNN Method predicted data-Prediced data from the best fitted model}}{\text{FFBPNN method of predicted Data}} \times 100 \quad \text{eq. (12)}$

IV. EXPERIMENTAL RESULTS

The results obtained from the integration of FFBPNN and Curve Expert software and its discussions are given in the following headings:

- 1. Performance evaluation of FFBPNN on testing and training data
- 2. Development of the best fitting models using Curve Expert software
- 3. Prediction from the best fitting models developed
- 4. Relative error between the predicted data of FFBPNN and the best fitted models

4.1 Performance evaluation of FFBPNN on testing and training data

The FFBPNN software was used to predict the area of cultivation and rice production for the testing set of data collected for 2005-06 and the training set of data for 2006-07 to 2009-10. The data set consisted of the area of cultivation of rice and rice production in different districts of Tamilnadu for the Kuruvai, Samba and Kodai seasons. The RMSE between the observed data and the predicted data were recorded for 18 iterations until the predicted data is exactly equal to observed data with the threshold value of 10^{-9} by updating the weights in each back propagation. The RMSE reduction pattern until it get zero is shown in fig 2 to fig 6 below:

Fig. 2 RMSE reduction pattern for testing data (area and production of rice) for 2005-06

Fig 2 shows that the maximum RMSE of 12.99 is found for the Samba rice production. It is followed by the RMSE of 6.34 for the Samba area of rice cultivation. Similarly, the minimum RMSE of 0.44 is found for the Kodai area of rice cultivation, which is followed by the second minimum RMSE of 0.73 for the Kuruvai area of rice cultivation. However, the RMSE is zero at the 18th iteration due to back propagation of FFBPNN.

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

Fig. 3 RMSE reduction pattern for training data (area and production of rice) for 2006-07

Fig 3 shows that the maximum RMSE of 8.87 is found for the Samba rice production. It is followed by the RMSE of 2.87 for the Samba area of rice cultivation. Similarly, the minimum RMSE of 0.26 is found for the Kodai area of rice cultivation, which is followed by the second minimum RMSE of 0.66 for the Kuruvai area of rice cultivation. However, the RMSE is zero at the 18th iteration, which makes the error between the observed data and the FFBPNN predicted data is zero.

Fig. 4 RMSE reduction pattern for training data (area and production of rice) for 2007-08

Fig 4 shows that the maximum RMSE of 5.91 is found for the Samba rice production. It is followed by the RMSE of 2.86 for the Samba area of rice cultivation. Similarly, the minimum RMSE of 0.29 is found for the Kodai area of rice cultivation, which is followed by the second minimum RMSE of 0.55 for the Kuruvai area of rice cultivation. The range of RMSE variation is from 0.29 to 5.91. However, the RMSE is zero at the 18th iteration due to back propagation of FFBPNN due to updating of weights. This back propagation makes the error between the observed data and the FFBPNN predicted data is zero.

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

Fig. 5 RMSE reduction pattern for training data (area and production of rice) for 2008-09

Fig 5 shows that the maximum RMSE of 5.56 is found for the Samba rice production. It is followed by the RMSE of 2.90 for the Samba area of rice cultivation. Similarly, the minimum RMSE of 0.36 is found for the Kodai area of rice cultivation, which is followed by the second minimum RMSE of 0.64 for the Kuruvai area of rice cultivation. However, the RMSE is zero at the 18th iteration, which makes the error between the observed data and the FFBPNN predicted data is zero.

Fig. 6 RMSE reduction pattern for training data (area and production of rice) for 2009-10

Fig 6 shows that the maximum RMSE of 8.96 is found for the Samba rice production. It is followed by the RMSE of 4.08 for the Samba area of rice cultivation. Similarly, the minimum RMSE of 0.25 is found for the Kodai area of rice cultivation, which is followed by the second minimum RMSE of 0.52 for the Kuruvai area of rice cultivation. The range of RMSE variation is from 0.25 to 8.96. However, the RMSE is zero at the 18th iteration due to back propagation of FFBPNN because of updating of weights. This back propagation makes the error between the observed data and the FFBPNN predicted data is zero.

Fig 2 to Fig 6 shows that the maximum RMSE of 12.99 is found for the Samba rice production. Similarly, the minimum RMSE of 0.25 is found for the Kodai area of rice cultivation during the year 2009-10. This trend of highest

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

starting RMSE is found for the Samba rice production in all the years of data from 2005-06 to 2009-10 and the lowest RMSE is found for the Kodai area of rice cultivation in all the years of data from 2005-06 to 2009-10. However, the RMSE is zero at the 18^{th} iteration, which makes the error between the observed data and the FFBPNN predicted data is zero. The major aim of the present research is to find an accurate prediction system, which was achieved. However, the author plan to incorporate the FFBPNN predicted data and the years of rice cultivation into the curve expert software to get the best fitting linear or non linear model connecting years (x) as independent variable and the area of rice cultivation of rice and rice production, which is varying every year.

4.2 Development of the best fitting models using Curve Expert software

The best fitting model connecting years (x) as independent variable and the area of rice cultivation (y) as dependent variable for different districts of rice cultivation during Kuruvai, Samba and Kodai seasons were done using curve expert software.

4.2.1 Best fitting models for area of rice cultivation for all the districts during three seasons

The best fitting model connecting years (x) as independent variable and the area of rice cultivation (y) as dependent variable for different districts of rice cultivation during Kuruvai, Samba and Kodai seasons were done using curve expert software and is shown in Table 1.

	Table 1: Best fitting model for area of rice cultivation				
	District	Kuruvai season -area of rice	Samba season- area of rice	Kodai season- area of rice	
1	Kancheepuram	Linear Fit: y = a + bx Where: a = 1743686.1 b = -859.1 SE=2589.6788153 r=0.5180583	Quadratic Fit: $y = a + bx + cx^2$ Where: a = 2.584097e+009 b = -2573281.5 c = 640.64286 SE=1387.7771642 r=0.9505217	Quadratic Fit: $y = a + bx + cx^2$ Where: a = 7.996972e+009 b = -7965705.5 c = 1983.6429 SE=2694.2101729 r=0.9594494	
2	Thiruvallur	Linear Fit: y = a + bx Where: a = 1819791.2 b = -886.8 SE=2800.7836284 r=0.5004716	Quadratic Fit: $y = a + bx + cx^2$ Where: a = 6.1498e+009 b = -6126986.2 c = 1526.0714 SE=2346.3276227 r=0.9059931	Quadratic Fit: $y = a + bx + cx^2$ Where: a = 4.3037151e+009 b = -4286962.5 c = 1067.5714 SE=1325.0531737 r=0.9638211	
3	Cuddalore	Quadratic Fit: $y = a + bx + cx^2$ Where: a = 2.8493559e+009 b = -2838075.3 c = 706.71429 SE= 784.3524899 r = 0.9758233	Quadratic Fit: $y = a + bx + cx^2$ Where: a = 6.4814269e+009 b = -6459923.7 c = 1609.6429 SE=2360.9653233 r = 0.9046873	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$ Where: a = 68.805182 b = -1979.2248 SE= 171.0517925 r = 0.8834125	
4	Villupuram	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$	Quadratic Fit: $y = a + bx + cx^2$ Where: a = 8.5909598e+009	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$	

(An ISO 3297: 2007 Certified Organization)

		Where: $a = 157.01568$	b = -8560802.7 c = 2132.7143	Where: a = 39.275129
		b = -1995.8502	SE=1392.5897565	b = -1999.7409
		SE=1848.8717797	r=0.9709031	SE=2803.5182283
		r =0.9285353		r=0.6824962
5	Vellore	Quadratic Fit:	Quadratic Fit:	Saturation Growth-Rate
		$y = a + bx + cx^2$	$y = a + bx + cx^2$	Model:
		Where: $a = 2.105(772 + 0.00)$	Where: $-2.7(0)(70)(a+00)$	$y = \frac{dx}{(b+x)}$
		h = -2.10307720+009	$a = 2.70007900 \pm 009$ b = 27511721	Where:
		c = -522.5	c = 685.42857	a = 44.279487
		SE = 503.0429405	SE = 828 8159713	b = -2001.8562
		r=0.9630275	r=0.9117379	SE=4982.8750880
(T1.:		Oregularities Dite	r=0./8//935
6	Iniruvannamalai	Quadratic Fit: $y = a + bx + ax^2$	Quadratic Fit: $y = a + bx + ax^2$	Linear Fit: y = g + by
		$y = u + bx + cx^{-1}$	$y = u + bx + cx^{-}$	y = a + bx Where:
		a = 47570186e + 009	a = 1.3046268e + 010	a = 19718643
		b = -4738750.2	b = -12994865	b = -965.99987
		c = 1180.1429	c = 3235.9286	SE=9115.0129493
		SE= 992.4629248	SE=8826.9221320	r=0.1899669
		r=0.9796578	r=0.8707363	
7	Salem	Quadratic Fit:	Saturation Growth-Rate	Quadratic Fit:
		$y = a + bx + cx^2$	Model:	$y = a + bx + cx^2$
		where: $a = 2.1471000 \pm 000$	$y = \frac{1}{(b+x)}$	where: 2 = 2.2547174 + 000
		h = -2139103.6	Where:	h = -2.23471746+009
		c = 53278571	a = 89.042528	c = 559.64286
		SE = 918.9074103	b = -1996.771	SE = 867.6229927
		r=0.8908108	SE=3034.1732766	r=0.8742354
8	Namakkal	Quadratic Fit:	Quadratic Fit:	Quadratic Fit:
0	TVallakkal	$y = a + hr + cr^2$	$y = a + bx + cx^2$	$y = a + hx + cx^2$
		y = u + bx + cx Where:	y = u + bx + cx Where:	Where:
		a =-3.389562e+009	a =4.3700042e+009	a =6.0526458e+008
		b = 3378194.3	b = -4353683.3	b = -602913.43
		c = -841.71429	c = 1084.3571	c = 150.14286
		SE=1087.3815468	SE= 538.0465195	SE= 83.2613784
	DI :	r=0.9134530	r=0.9898150	r=0.9923142
9	Dharmapuri	Quadratic Fit:	Saturation Growth-Rate	Quadratic Fit:
		$y = a + bx + cx^2$		$y = a + bx + cx^2$
		a = 3.2453323e + 0.09	$y = \frac{1}{(b+x)}$	a = 23771725e + 009
		b = -3233498.9	Where:	b = -2368283.4
		c = 805.42857	a = 102.2878	c = 589.85714
		SE=2049.8040186	U1989.9121 SF=1427 7431606	SE= 141.2503349
		r=0.7624569	r=0.6705804	r=0.9976424
10	Krishnagiri	Saturation Growth-Rate	Quadratic Fit:	Quadratic Fit:
		Model:	$y = a + bx + cx^2$	$y = a + bx + cx^2$
		$y = \frac{ax}{(h+x)}$	Where:	Where:
		Where:	a =2.5389341e+009	a =9.4119911e+008
		a = 48.74027	b = -2529302.2	b = -937/35.71

(An ISO 3297: 2007 Certified Organization)

		b = -1992.9109	c = 629.92857	c = 233.57143
		SE= 564.9581785	SE= 315.1166679	SE= 75.8004900
		r=0.8452760.	r=0.9914517	r=0.9947594
11	Coimbatore	Quadratic Fit:	Linear Fit:	Quadratic Fit:
		$y = a + bx + cx^2$	y = a + bx	$y = a + bx + cx^2$
		Where:	Where:	Where:
		a =-3.611354e+008	a = 1792512.4	a =4.7931096e+008
		b = 359851.93	b = -891.6	b = -477222.36
		c = -89.642857	SE=1140.2577486	c = 118.78571
		SE= 78.8850882	r=0.8190485	SE= 59.8867980
		r=0.9514829		r=0.9981491
12	Thiruppur	Newly formed district. It has	no data to process and hence of	mitted
13	Erode	Quadratic Fit:	Quadratic Fit:	Logarithm Fit:
		$y = a + bx + cx^2$	$y = a + bx + cx^2$	y = a + b * log(x)
		Where:	Where:	Where:
		a =1.2303838e+009	a =1.8457344e+009	a = -3067687.1
		b = -1225176.4	b = -1838841.2	b = 403605.58
		c = 305	c = 458	SE= 579.8141688
		SE= 224.7536429	SE= 654.9238124	r=0.5350237
		r=0.9947346	r=0.9207655	
14	Tiruchirapalli	Exponential Fit: $y = ae^{bx}$	Saturation Growth-Rate	Saturation Growth-Rate
		Where:	Model:	Model:
		a = 9.2118133e-017	$y = \frac{ax}{a}$	$y = \frac{ax}{a}$
		b = 0.022763071	(b+x)	(b+x)
		SE= 888.3654415	3 - 755 8135	a = 4.6025674
		r=0.2898737	a = 753.8155 b = 1091.9992	h = -20025755
			U = -1901.0003 SE=2259 9200595	D = -2005.5755 SE=1400.0408067
			SE = 5550.0509505 r=0.7805731	SE = 1499.9498907 r=0.7727203
15	Vorur	Diag not cultivated in this	Ouedratic Fit:	Ouedratic Fit:
15	Kalu	Rice not cuntivated in this	Quadratic Fit. $y = a + by + ay^2$	Quadratic Fit.
		season	y = a + bx + cx	y = a + bx + cx
			$x = 2.2085570 \pm 0.00$	$a = 2.1588863 \pm 0.08$
			h = 3386250.3	h = 2150850500000000000000000000000000000000
			c = 843.5	c = 53571429
			C =	SF = 815666248
			r=0.8189261	r=0.9110592
16	Perambalur	Gaussian Model:	Gaussian Model:	Hyperbolic Fit:
10	i crumburu	$-(b-x)^2$	$-(b-x)^2$	
		$y = ae^{\frac{1}{2c^2}}$	$y = ae^{\frac{1}{2c^2}}$	$y = a + \frac{1}{x}$
		Where:	Where:	Where:
		a = 3155.3325	a = 43055.881	a = 366562.7
		b = 2006.2877	b = 2005.3882	b = -7.3282097e+008
		c = 1.223665	c = 1.8182356	SE=1011.8276980
		SE= 803.1227162	SE=6782.4260734	r=0.3118982
		r=0.8776631	r=0.9545845	
17	Ariyalur	Newly formed district. It has	no data to process and hence o	mitted
18	Pudukottai	User-Defined Model:	Quadratic Fit:	Quadratic Fit:
		y = a + b * x	$y = a + bx + cx^2$	$y = a + bx + cx^2$
		Where:	Where:	Where:
		a = 544601.52	a =4.4404662e+009	a = -47800181
		b = -270.90001	b = -4425305.1	b = 47614.171

(An ISO 3297: 2007 Certified Organization)

		SE= 105.6609357	c = 1102.5714	c = -11.857143
		r=0.9779332	SE=3448.2304612	SE= 37.0898523
			r=0.6640203	r=0.8237899
19	Thanjavur	Hyperbolic Fit: $y = a + \frac{b}{a}$	Saturation Growth-Rate	Saturation Growth-Rate
		Where ⁻	Model:	Model:
		a = 452075.03	$y = \frac{dx}{(h+x)}$	$y = \frac{dx}{(h+x)}$
		b =-8.5278799e+008	Where:	Where:
		SE=8265.1625434	a = -4290.354	a = -8.1583351
		r=0.0467154	b = -2072.7895	b = -2012.0108
			SE=3179.7561814	SE= 602.0275783
			r=0.7603522	r=0.9229136
20	Thiruvarur	Logarithm Fit:	Quadratic Fit:	Quadratic Fit:
		y = a + b * log(x)	$y = a + bx + cx^2$	$y = a + bx + cx^2$
		Where:	Where:	Where:
		a = -6801594.8	a =1.744785e+009	a =4.105273e+009
		b = 896950.64	b = -1739456.9	b = -4091756.3
		SE=131/4.5365883	c = 433.5/143	c = 1019.5/14
		1-0.0013333	SE = 1382.8031829	SE = 207.3379782 r=0.0070556
			1-0.8584080	1-0.9979330
21	Nagapattinam	$\mathbf{H}_{\mathbf{r}} = \mathbf{r}_{\mathbf{r}} \mathbf{h}_{\mathbf{r}}^{\mathbf{h}} \mathbf{h}$	Linear Fit: $y = a + br$	Quadratic Fit:
21	ruguputtinum	Hyperbolic Fit: $y = a + \frac{1}{x}$	Where $\frac{1}{2}$	$y = a + bx + cx^2$
		Where:	a = 909925.1	y = a + bx + cx Where:
		a = 19/5008	b = -387.5	a = 7.2240924e + 008
		b = -3.9069138e+009	SE=3259.3085514	b = -719771.06
		SE=4518.4469613	r=0.2121232	c = 179.28571
		1-0.3648908		SE= 345.8650439
				r=0.8434410
22	Madurai	Quadratic Fit:	Saturation Growth-Rate	Hyperbolic Fit: $y = a + \frac{b}{a}$
		$y = a + bx + cx^2$	Model:	Where:
		Where:	$y = \frac{dx}{(b+x)}$	a = 353497.84
		a = -6.3849087e + 009	Where:	b =-7.0222335e+008
		$b = -\frac{5362}{0}$	a = 310.53959	SE= 357.0785864
		C = -1365.1429 SE-1705 2686122	b = -1994.8174	r=0.6653966
		r=0.9193692	SE=3181.0254633	
		1 0.5155052	r=0.924904	
23	Theni	Quadratic Fit:	Quadratic Fit:	User-Defined Model:
		$y = a + bx + cx^2$	$y = a + bx + cx^2$	y = a + b * x
		where: $a = 2.8200426 \pm 0.08$	where: a = 4.5825271 a + 0.08	where: 226720.70
		$a = 2.82094300 \pm 008$ b = 281186.01	$a = 4.58253710 \pm 008$ b = 456404.33	a = -320/20.79 b = 162.00000
		c = 70.071429	b = -430404.33 c = 113.64286	0 = 102.99999 SE= 210 0733317
		SF = 370069492	$SF = 229 \ 1105784$	r=0.8041618
		r=0.9899238	r=0.9377955	1 0.0011010
24	Dindigul	Saturation Growth-Rate	Saturation Growth-Rate	Saturation Growth-Rate
		Model:	Model:	Model:
		$v = \frac{ax}{ax}$	$v = \frac{ax}{ax}$	$v = \frac{ax}{ax}$
		(b+x)	(b+x)	(b+x)
		y = 5.4841028	w_{11010} x = 310.68102	w_{11010}
		a = -3.4041930 b = -20015007	a = -19615876	a = 0.3300384 b = -2002.0026
		02001.3997	01901.30/0	02002.0920

(An ISO 3297: 2007 Certified Organization)

		SE= 155.9981397	SE=1683.4326684	SE= 349.1344564
		r=0.9811653	r=0.3027815	r=0.9572692
		1 0.90110001	1 0.002/010	1 0.5072052
25	Ramanathapuram	Rice not cultivated in this season	Quadratic Fit: $y = a + bx + cx^2$ Where: a = 5.7880025e+009 b = -5768621.3 c = 1437.3571 SE=2787.2685660 r=0.8411164	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$ Where: a = 6.7862166 b = -1999.2383 SE= 119.2505911 r=0.9648408
26	Virudhunagar	Rice not cultivated in this	Linear Fit: $y = a + bx$	Linear Fit: $y = a + bx$
		season	Where: a = 1377377.5 b = -672.5 SE=2447.3137314 r=0.4484271	Where: a = 420703.8 b = -208.4 SE = 469.5595099 r = 0.6295630
27	Sivagangai	Rice not cultivated in this	Quadratic Fit:	Rice not cultivated in this
		season	$y = a + bx + cx^{2}$ Where: a = 5.5541552e+009 $b = -5532138.5$ $c = 1377.5714$ SE=3143.8364961 r=0.9076624	season
28	Tirunelveli	Gaussian Model: $y = ae^{\frac{-(b-x)^2}{2c^2}}$ Where: a = 26376.013 b = 2007.136 c = 2.4711389 SE=2200.3048107 r=0.9106846	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$ Where: a = -1068.1103 b = -2043.1922 SE=5652.0152824 r=0.4697381	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$ Where: a = 5.9480122 b = -2004.0868 SE=2315.1486255 r=0.8938372
29	Thoothukudi	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$ Where: a = 151.58641 b = -1965.9526 SE= 990.7883960 r=0.3041219	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$ Where: a = -100.4256 b = -2026.1233 SE=1593.2949601 r=0.5357672	Gaussian Model: $y = ae^{\frac{-(b-x)^2}{2c^2}}$ Where: a = 3603.8834 b = 2006.4299 c = 1.2971632 SE = 637.4731849 r = 0.9171349
30	The-Nilgiris	Quadratic Fit: $y = a + bx + cx^2$ Where: a = -1.0483882e+008 b = 104705.83 c = -26.142857 SE= 42.9378288	Rice not cultivated in this season	Rice not cultivated in this season

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

		r=0.9966401		
31	Kanyakumari	Gaussian Model: $y = ae^{\frac{-(b-x)^2}{2c^2}}$ Where: a = 10771.465 b = 2004.4443 c = 6.4430537 SE= 284.0898809 r=0.9782834	Hyperbolic Fit: $y = a + \frac{b}{x}$ Where: a = -1433906.2 b = 2.8981968e+009 SE= 114.2776838 r=0.9962374	Rice not cultivated in this season

Where SE – Standard Error and r – correlation coefficient

From table 1, it was found that the best fitting equation various from seasons to seasons and from the district to district depending upon the nature of area of rice cultivation in hectare with respect to years of rice cultivation. The more number of fits are found in the order of 1) Quadratic Fit, 2) Linear Fit 3) User-Defined Model 4) Saturation Growth-Rate Model 5) Logarithm Fit 6) Hyperbolic Fit 7) Exponential Fit and 8) Gaussian Model.

The nature of fit depends upon the coefficient of correlation (r). The value of r is 0.9981491 for Kodai season of Coimbatore district, which is very close to 1, it means the nature of fit is a perfect with highest reliability of 99.81% for prediction and simulation using the quadratic model developed. If the value of r is close to zero, then the model is not the best model and its reliability for prediction is poor. In the table 1, for Kuruvai season of Thanjavur district, the value of r is 0.0467154. It means the reliability of prediction using the hyperbolic fitting is only 4.67%. It is found that most of the fitting has more than 50% reliability and very few cases has poor fitting, which needs more input data for analysis to find the correct pattern of behaviour.

4.2.2 Best fitting models for rice production for all the districts during three seasons

The best fitting model connecting years (x) as independent variable and the rice production (y) as dependent variable for different districts of rice production during Kuruvai, Samba and Kodai seasons were done using curve expert software and is shown in Table 2.

	District	Kuruvai – rice production	Samba-rice production	Kodai – rice production
1	Kancheepuram	Quadratic Fit: $y = a + bx + cx^2$ Where: a = -1.3871188e+010 b = 13821687 c = -3443.0714 SE=3464.7662421 r=0.9394151	Quadratic Fit: $y = a + bx + cx^2$ Where: a = -5.1022184e+010 b = 50836157 c = -12662.643 SE=41198.7937160 r=0.6809555	Quadratic Fit: $y = a + bx + cx^2$ Where: a = 1.7715959e+010 b = -17645532 c = 4393.8571 SE=2914.8146511 r=0.9916769
2	Thiruvallur	Quadratic Fit: $y = a + bx + cx^2$ Where: a = -3.4400411e+010 b = 34281651 c = -8540.7857 SE=10180.2940032 r=0.9125863	Quadratic Fit: $y = a + bx + cx^2$ Where: a = -1.8002776e+010 b = 17937323 c = -4468 SE=13217.5046363 r=0.7105419	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$ Where: a = 197.42837 b = -1998.2679 SE=8301.4791891 r=0.7588055

Table 2: Best fitting model for rice production

(An ISO 3297: 2007 Certified Organization)

3	Cuddalore	Ouadratic Fit:	Linear Fit: $v = a + bx$	Linear Fit: $v = a + bx$
-		$y = a + bx + cx^2$	Where:	Where:
		Where.	a = -15238047	a = 1291200.9
		a = 6.5116541e + 0.09	h = 7700	h = -635.3
		h = -64858882	SF = 82719 8343873	SF=1820 9775671
		c = 1615.0714	r=0.1675473	r=0.5372348
		C = 1015.0714 SE = 5162,2082520	1-0.10/34/3	1-0.5572548
		SE = 5105.5062550		
4	Villunuram	Saturation Growth-Rate	Linear Fit: $y = a \pm hx$	Saturation Growth-Rate
4	v mupuram	Model:	Where: $y = a + bx$	Model:
		ax	a = 21204004	ax
		$y = \frac{1}{(b+x)}$	a = -2129409.4	$y = \frac{1}{(b+x)}$
		Where:	D = 1237 SE=22250 (549214)	Where:
		a = 386.34995	SE-22559.0548214	a = 119.69224
		b = -1998.3419	r=0.1004939	b = -2000.0286
		SE=9987.8920141		SE=8133.8383235
		r=0.8878347		r=0.7363289
5	Vellore	Gaussian Model:	Linear Fit: $y = a + bx$	Saturation Growth-Rate
		$\frac{-(b-x)^2}{2}$	Where:	Model:
		$y = ae^{-2c^2}$	a = -3182795.2	$y = \frac{ax}{(1+x)}$
		where:	b = 1613.9001	(b+x)
		a = 3/502.553	SE=6984.3258109	x = 210.76110
		b = 2008.003	r=0.3887064	a = 219.70119 b = 1000.6222
		c = 2.858/991		0 = -1999.0333 SE=15111.6080050
		SE= 483.8331549		SE-13111.0080030
		r=0.9985916.		1-0.6922441.
6	Iniruvannamalai	Saturation Growth-Rate	Saturation Growth-Rate	Linear Fit: $y = a + bx$
		ax	ax	where:
		$y = \frac{1}{(b+x)}$	$y = \frac{1}{(b+x)}$	a = 1021070.3 b = 754.7
		Where:	Where:	0 = -7.54.7 SE-24807 0250705
		a = 715.87884	a = 1118.2917	SE-24807.0550795
		b = -1986.2656	b = -1994.4858	1-0.0554587
		SE=8549.1752757	SE=34863.8974163	
		r=0.5775305	r=0.6085882	
7	Salem	Quadratic Fit:	Saturation Growth-Rate	Quadratic Fit:
		$y = a + bx + cx^2$	Model:	$y = a + bx + cx^2$
		Where:	$y = \frac{ax}{(b+x)}$	Where:
		a =1.250018e+010	(b+x) Where:	a =9.5186637e+009
		b = -12454424	a = 16587837	b = -9484697.9
		c = 3102.2143	h = -1058.0415	c = 2362.7143
		SE=4315.1006977	SE = 167037801640	SE=2428.7502611
		r=0.9104068	r=0.1412975	r=0.9363828
8	Namakkal	Ouadratic Fit:	Ouadratic Fit:	Ouadratic Fit:
		$y = a + hx + cx^2$	$y = a + hx + cx^2$	$y = a + hx + cx^2$
		Where:	Where:	Where:
		a = -1.2402831e + 010	a =1.4715317e+010	a =1.7260448e+009
		b = 12359497	b = -14660975	b = -1719294.8
		c = -3079.0714	c = 3651.7143	c = 428.14286
		SE=10734.9313600	SE=4008.6395488	SE= 393.0412919
		r=0.6046721	r=0.9464677	r=0.9809694
9	Dharmapuri	Quadratic Fit:	Gaussian Model:	Quadratic Fit:

(An ISO 3297: 2007 Certified Organization)

r				
		$y = a + bx + cx^{2}$ Where: a = 9.1154397e+009 b = -9084513.9 c = 2263.4286 SE=7664.0810610 r=0.6355731	$y = ae^{\frac{-(b-x)^2}{2c^2}}$ Where: a = 46655.287 b = 2006.8182 c = 3.9666421 SE=4848.4441875 r=0.6094944	$y = a + bx + cx^{2}$ Where: a = 6.4592346e+009 $b = -6435285$ $c = 1602.8571$ SE= 345.1985763 r=0.9978800
10	Krishnagiri	Quadratic Fit: $y = a + bx + cx^2$ Where: a = 6.0730068e+009 b = -6052458.6	Quadratic Fit: $y = a + bx + cx^2$ Where: a = 5.1730376e+009 b = -5156050	Quadratic Fit: $y = a + bx + cx^2$ Where: a = 2.2338987e+009 b = -2225933.9
11	Coimbatoro	c = 1508 SE= 972.2065622 r=0.9748071	c = 1284.7857 SE=1480.4048869 r=0.9423660	c = 554.5 SE= 255.3617042 r=0.9861086
		$y = ae^{\frac{-(b-x)^2}{2c^2}}$ Where: a = 6468.7172 b = 2007.3562 c = 1.9595669 SE = 264.8881852 r = 0.9897040	y = $a + bx + cx^2$ Where: a = -8.5114829e+009 b = 8483131.3 c = -2113.7143 SE=1321.7468093 r=0.9788308	Hyperbolic Fit: $y = a + \frac{b}{x}$ Where: a = -1974558.6 b = 3.9688497e+009 SE=1658.7338162 r=0.7351699
12	Thiruppur	Newly formed district. It has	no data to process and hence of	mitted
13	Erode	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$ Where: a = 247.58621 b = -1996.2721 SE=2574.3466085 r=0.9519910	User-Defined Model: y = a + b * x Where: a = -5146607.1 b = 2623.9004 SE=17124.3418355 r=0.2694082	User-Defined Model: y = a + b * x Where: a = -1024356.7 b = 513.0999 SE=2121.7677143 r=0.4038979
14	Tiruchirapalli	Logarithm Fit: y = a + b * log(x) Where: a = -14430152 b = 1900777.6 SE=3019.5668927 r=0.4969286	User-Defined Model: y = a + b * x Where: a = -9006419.3 b = 4596.5 SE=27175.7867982 r=0.2950570	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$ Where: a = 26.145095 b = -2002.1593 SE=5427.8558798 r=0.5784679.
15	Karur	Rice not cultivated in this season	Quadratic Fit: $y = a + bx + cx^2$ Where: a = 9.667602e+009 b = -9638306.3 c = 2402.2857 SE=6765.6708925 r=0.8682850	Quadratic Fit: $y = a + bx + cx^2$ Where: a = 5.5265221e+008 b = -550607.43 c = 137.14286 SE= 217.5804613 r=0.8987622
16	Perambalur	Gaussian Model:	Quadratic Fit:	Saturation Growth-Rate

(An ISO 3297: 2007 Certified Organization)

		$\frac{-(b-x)^2}{2}$	$y = a + bx + cx^2$	Model:
		$y = ae^{-2c^2}$	Where:	$y = \frac{ax}{ax}$
		where:	a =-3.1176081e+010	(b+x)
		a = 8585.5609	b = 31083675	w_{11010} = 13.866651
		b = 2006.7458	c = -7747.8571	a = -15.800051 b = -2014.7557
		c = 1.4/54603	SE=21005.0044628	0 = -2014.7337 SE=2025 2251772
		SE= 540.9664491	r=0.8929604	SE=2083.5551772
17	A	r=0.98/2/64	no doto to macona ond honos o	1-0.4087832
1/	Ariyalur	Newly formed district. It has	no data to process and hence of	mitted
18	Pudukottai	Gaussian Model:	Saturation Growth-Rate	Quadratic Fit:
		$v = a e^{\frac{-(b-x)^{-}}{2c^{2}}}$	Widdel:	$y = a + bx + cx^2$
		Where [.]	$y = \frac{dx}{(h+x)}$	where:
		a = 3898.5473	(D+x)	a = -2.2/45933e + 008
		b = 2005.7047	1007 0056	b = 226585.69
		c = 2.3179513	a = 1097.9930 b = 1006.0624	c = -56.4285/1
		SE = 520 9259325	D = -1990.0034	SE = 1/6.4180101
		r=0.9422405	SE-45308.9709000	r=0.8002307
10	Thomasour	Quadratia Fit:	$\frac{1-0.00}{000}$	Saturation Crowth Data
19	Thanajavui	Quadratic Fit.	Linear Fit: $y = a + bx$ Where:	Model:
		$y = a + bx + cx^{-1}$	$\frac{1}{2}$	ax
		$a = -2.6122822a\pm010$	a = 40300990 b = 23805.6	$y = \frac{1}{(h+x)}$
		a = -5.0123823e+010 b = -35005165	D = -23893.0 SE=108000 2751140	$(D + \lambda)$ Where:
		0 = 33993103	SE = 108909.2731140 r=0.271857	a = -26301516
		C = -6900.7143 SE = 22878.4260080	1-0.3/183/	h = -2011.9805
		SE = 52878.4300089 r=0.5078485D		SE=1336.9649901
		1-0.59784851		r=0.9626932
				1-0.9020932
20	Thiruvarur	Here repeated in Eit: a = a + b	Linear Fit: $y = a + bx$	Quadratic Fit:
		Hyperbolic Fit. $y = u + \frac{1}{x}$	Where:	$y = a + hx + cx^2$
		Where:	a = 2661561.4	Where:
		a = 14/41116	b = -1181.8	a = 1.227815e + 010
		b = -2.945897/e + 010	SE=197553.5226417	h = -12239153
		SE=48251.8201462	r=0.0109213	c = 3050.0714
		r=0.2667021		SE = 222.3801128
				r=0.9998217
21	Nagapattinam	Gaussian Model:	Linear Fit:	Quadratic Fit:
		$\frac{-(b-x)^2}{2}$	y = a + bx	$y = a + bx + cx^2$
		$y = ae^{-2c^2}$	Where:	Where:
		Where:	a = -20435712	a =2.0430858e+009
		a = 111755.2	b = 10306.9	b = -2035671.6
		b = 2007.6056	SE=232688.8242229	c = 507.07143
		c = 2.18/028/	r=0.0806077	SE=1351.6446702
		SE=18839.4140761		r=0.7400011
22	Madamai	r=0.8416800	Ostantian C (1 D)	h
22	Madurai	Quadratic Fit:	Saturation Growth-Rate	Hyperbolic Fit: $y = a + \frac{b}{r}$
		$y = a + bx + cx^2$	IVIODEI:	Where:
		where:	$y = \frac{dt}{(b+x)}$	a =2452383.5
		a = -2.752215e+010	Where:	b =-4.897007e+009
		D = 2/425929	a = 2354.2097	SE=2557.6749244
		c = -6832.5	b = -1982.455	r=0.6554285
		SE=7683.2588924	SE=23528.8094029	
		r=0.9204029		

(An ISO 3297: 2007 Certified Organization)

			r=0.5154196	
23	Theni	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$ Where: a = -161.04523 b = -2019.236 SE=2594.7649256 r=0.8442289	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$ Where: a = -621.45162 b = -2037.0949 SE=3582.5315113 r=0.5705672	User-Defined Model: $y = a + b * x$ Where: $a = -1099325.8$ $b = 548.50004$ $b = 548.50004$ SE= 678.7312428 $r=0.8277842$ $r=0.8277842$
24	Dindigul	Linear Fit: $y = a + bx$ Where: a = 1220998.9 b = -604.3 SE=1759.8986619 r=0.5311614	Quadratic Fit: $y = a + bx + cx^2$ Where: a = 6.6052998e+009 b = -6584592.2 c = 1641 SE=2858.3139088 r=0.9233027	User-Defined Model: y = a + b * x Where: a = 3879971.4 b = -1927.2002 SE=2644.9761688 r=0.7993399
25	Ramanathapuram	Rice not cultivated in this season	Quadratic Fit: $y = a + bx + cx^2$ Where: a = 1.4186619e+011 b = -1.4136616e+008 c = 35217 SE=86562.8849508 r=0.7351633	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$ Where: a = 19.827254 b = -2000.5996 SE= 620.4433723 r=0.9527623
26	Virudhunagar	Rice not cultivated in this season	Gaussian Model: $y = ae^{\frac{-(b-x)^2}{2c^2}}$ Where: a = 119166.47 b = 2006.3098 c = 2.1996714 SE=31888.6369435 r=0.7283510	Hyperbolic Fit: $y = a + \frac{b}{x}$ Where: a = -3087383.7 b = 6.2128575e+009 SE= 330.8032185 r=0.9931708
27	Sivagangai	Rice not cultivated in this season	Quadratic Fit: $y = a + bx + cx^2$ Where: a = 7.5903579e+010 b = -75630109 c = 18839.429 SE=26240.3193779 r=0.8976911	Rice not cultivated in this season
28	Tirunelveli	Gaussian Model: $y = ae^{\frac{-(b-x)^2}{2c^2}}$ Where: a = 108359.8 b = 2007.2511 c = 2.2487998 SE=8329.4578372	Exponential Fit: $y = ae^{bx}$ Where: a = 1.0707657e-028 b = 0.038263333 SE=36748.0517464 r=0.4036699	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$ Where: a = 37.508174 b = -2002.5215 SE=9139.9342904

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

		r=0.9440887		r=0.6549262
29	Thoothukudi	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$ Where: a = -384.50902 b = -2030.2731 SE=6031.8592010 r=0.3963505	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$ Where: a = -243.63815 b = -2017.4643 SE=9166.7550685 r=0.6730428	Linear Fit: $y = a + bx$ Where: a = 2873553.3 b = -1427.7 SE=4794.9353941 r=0.4776079
30	The-Nilgiris	Quadratic Fit: $y = a + bx + cx^2$ Where: a = -7.5158574e+008 b = 749649.79 c = -186.92857 SE= 413.6753730 r=0.9682446	Rice not cultivated in this season	Rice not cultivated in this season
31	Kanyakumari	Quadratic Fit: $y = a + bx + cx^2$ Where: a = -4.6177021e+009 b = 4602849.8 c = -1147 SE=1372.4398710 r=0.9474092	Saturation Growth-Rate Model: $y = \frac{ax}{(b+x)}$ Where: a = 247.19303 b = -1995.8921 SE= 869.4616473 r=0.9934423	Rice not cultivated in this season

Where SE – Standard Error and r – correlation coefficient

From table 2, it was found that the best fitting equation various from seasons to seasons and from the district to district depending upon the nature of rice production in tonnes with respect to years of rice production. The type of fits in table 2 in the order of 1) Quadratic Fit, 2) Linear Fit 3) User-Defined Model 4) Saturation Growth-Rate Model 5) Logarithm Fit 6) Hyperbolic Fit 7) Exponential Fit and 8) Gaussian Model.

The nature of fit depends upon the coefficient of correlation (r). The value of r is 0.9998217 for Kodai season of Thiruvarur district, which is very close to 1, it means the nature of fit is a perfect with highest reliability of 99.98% for prediction and simulation using the quadratic model developed. If the value of r is close to zero, then the model is not the best model and its reliability of prediction is poor. In the table 2, for Samba season of Thiruvarur district, the value of r is 0.0109213. It means the reliability of prediction using the linear fitting is only 1.09%. It is found that most of the fitting has more than 50% reliability and few cases has poor fitting, which needs more input data for analysis to find the correct pattern of behaviour.

4.3 Prediction from the best fitting models developed

Table A.1 in the appendix shows the observed data of area of cultivation, which is same as the FFBPNN method of predicted area of cultivation due to zero absolute relative error and zero RMSE between the observed data and FFBPNN predicted data. In the best fitted models noted in the above section 4.2.1 for area of rice cultivation for different districts during the three seasons, the best predicted of area of rice cultivation in hectare is obtained by inserting x = (2005, 2006, 2007, 2008 and 2009). The best predicted area of cultivation from the best fitted model is shown in Table A.2 in the appendix.

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

Similarly, Table A.4 in the appendix shows the observed data of rice production, which is same as the FFBPNN method of predicted rice production due to zero absolute relative error and zero RMSE between the observed data and FFBPNN predicted data. In the best fitted models noted in the above section 4.2.2 for rice production for different districts during the three seasons, the best predicted rice production in tonnes is obtained by inserting x = (2005, 2006, 2007, 2008 and 2009). The predicted rice production from the best fitted model is shown in Table A.5 in the appendix.

4.4 Relative error between the predicted data of FFBPNN and the best fitted models

The variation between the FFBPNN method of predicted data and the best fitted method of predicted data were studied by computing the percentage relative error. The relative error percent for area of cultivation for five years and their mean error percent are shown in Table A.3 in the appendix. From table A.3, the following information was found:

- During Kuruvai season, 25 districts are cultivating rice with the minimum relative error in area of cultivation is 32.10, the maximum relative error in area of cultivation is 1.51, the five year mean error in area of cultivation is -2.40. The standard deviation of relative error in the area of cultivation is 6.64.
- During Samba season, 28 districts are cultivating rice with the minimum relative error in area of cultivation is 19.08, the maximum relative error in area of cultivation is 3.06, the five year mean error in area of cultivation is -1.22. The standard deviation of relative error in the area of cultivation is 3.76.
- During Kodai season, 23districts are cultivating rice with the minimum relative error in area of cultivation is -25.14, the maximum relative error in area of cultivation is 3.82, the five year mean error in area of cultivation is -3.76. The standard deviation of relative error in the area of cultivation is 6.52.

The relative error percent for rice production for five years and their mean error percent are shown in Table A.6 in the appendix. From table A.6, the following information was found:

- During Kuruvai season, 25 districts are cultivating rice with the minimum relative error in rice production is -35.65, the maximum relative error in rice production is 2.19, the five year mean error in rice production is -2.33. The standard deviation of relative error in the rice production is 7.19.
- During Samba season, 28 districts are cultivating rice with the minimum relative error in rice production is 74.62, the maximum relative error in rice production is 1.14, the five year mean error in rice production is 8.80. The standard deviation of relative error in the rice production is 20.73.
- During Kodai season, 23 districts are cultivating rice with the minimum relative error in rice production is 31.22, the maximum relative error in rice production is 3.72, the five year mean error in rice production is 4.98. The standard deviation of relative error in the in rice production is 7.71.

The five years mean errors are in the range of -1.22 to -8.80%. The minus sign indicates that the observed data (FFBPNN predicted data) is lower than the predicted data from the best predicted models. The conclusion from the study reveals the fact that the best predicted models and their predicted data is 1 to 9% higher than the observed data. It may be a natural increase in area of cultivation and improvement in rice production technology.

V. CONCLUSIONS AND FUTURE WORKS

The prediction of rice production is a major information needed for the policy makers of the Tamilnadu Government. The present research successfully developed an architecture called FFBPNN. The software developed to implement the FFBPNN architecture was tested with the testing data and training data. It was found that at 18th iteration, there was zero error between the observed data and the predicted data because the RMSE is zero and the ARE is also zero. Rice production is a complex task of soil, water, crop variety, crop husbandry, crop protection etc. The rice production in the state varies every year. The variation in area of cultivation and rice production for 31 districts in three seasons are captured by integrating the curve expert software into the FFBPNN software. The curve expert produced the best fitting model to different districts during the three seasons. These developed models were used to simulate the best predicted area of rice cultivation and rice production. The type of fits are found to be 1) Quadratic Fit, 2) Linear Fit 3) User-Defined Model 4) Saturation Growth-Rate Model 5) Logarithm Fit 6) Hyperbolic Fit 7) Exponential Fit and 8) Gaussian Model.

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

The value of r is 0.9981491 for area of cultivation data in the Kodai season of Coimbatore district, which is very close to 1, it means the nature of fit is a perfect with highest reliability of 99.81% for prediction and simulation using the quadratic model developed. Similarly, it is found that the value of r is 0.9998217for rice production data in the Kodai season of Thiruvarur district, which is very close to 1, it means the nature of fit is a perfect with highest reliability of 99.98% for prediction and simulation using the quadratic model developed. The low r value of 0.0467154 was found for the area of rice cultivation data in the Kuruvai season of Thanjavur district. It means the reliability of prediction using the hyperbolic fitting is only 4.67%. It is found that most of the fitting has more than 50% reliability and very few cases has poor fitting, which needs more input data for analysis to find the correct pattern of behaviour. It was also found that the best predicted models and their predicted data gives 1 to 9% higher than the observed data. It may be a natural increase in area of cultivation for every year or it may be improvement in rice production technology. The research has to be continued in future so as to predict the rice production, which is a complex process.

REFERENCES

- 1. Arun Balaji, S; and Baskaran, K; "Design and development of Artificial Neural Networking (ANN) system using sigmoid activation function to predict annual rice production in Tamilnadu", International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.3, No.1, February 2013.
- Arun Balaji, S; and Baskaran, K; "Feed Forward Back Propagation Neural Network coupled with Rice Data Simulator for prediction of rice production in Tamilnadu", International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol. 4, No.5, October 2014.
- Rama Krishna Singh; and Prajneshu; "Artificial Neural Network Methodology for Modelling and Forecasting Maize Crop Yield", Agricultural Economics Research Review, Vol. 21 January-June 2008 pp. 5-10, 2008.
- 4. Saisunee Jabjone; and Sura Wannasang; "Decision Support System Using Artificial Neural Network to Predict Rice Production in Phimai District, Thailand", International Journal of Computer and Electrical Engineering, Vol. 6, No. 2, April 2014.
- 5. Siti Khairunniza-Bejo; Samihah Mustaffha; and Wan Ishak Wan Ismail; "Application of Artificial Neural Network in Predicting Crop Yield", Journal of Food Science and Engineering, Vol. 4, pp. 1-9, 2014.
- 6. Aboukarima, A,M; Elsoury, H,A; and Menyawi, M; "Artificial Neural Network Model for the Prediction of the Cotton Crop Leaf Area", International Journal of Plant & Soil Science, Vol. 8(4), pp. 1-13, 2015.
- 7. Ji,B; Sun, Y; and Yang, S; "Artificial neural networks for rice yield prediction in mountainous regions", Journal of Agricultural Science, Vol. 145, pp. 249–261, 2015.
- 8. Saha Narayan; Jha Amol Kumar; and Pathak Krishna Kant; "Comparison of Regression and Artificial Neural Network Impact Assessment Models: A Case Study of Micro-Watershed Management in India", International Environmental Modelling and Software Society, International Congress on Environmental Modelling and Software Managing Resources of a Limited Planet, Sixth Biennial Meeting, Leipzig, Germany, 2012.
- 9. Snehal, S; Dahikar; Sandeep, V, Rode; and Pramod Deshmukh; "An Artificial Neural Network Approach for Agricultural Crop Yield Prediction Based on Various Parameters", International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE), Vol. 4(Issue 1), January 2015.
- 10. Shruti, A; Nakhle; and Dhok, G,P; "A Review on Expert System for Crop Prediction", International Journal of Engineering Trends and Technology (IJETT)", Vol. 21(9), 2015.

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

BIOGRAPHY

S.Arun Balaji has completed B.E, MBA (Information Systems) M.Tech (Information Technology). Currently pursuing PhD in Computer Science & Engineering, from Karpagam University, Coimbatore. He has Teaching Experience of 5.5 years

Dr. K. Baskaran has completed B.E., M.E., PhD and Currently working as Associate Professor (CSE & IT) at Government College of Technology, Coimbatore– 641013, India

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

Appendix

C M.o	Dictanioto	Observed	area of rice	in Ha for I	Kuruvai		Observed ar	ea of rice cultiv	vation in Ha for	r Samba		Observed	l area of rice	cultivation	in Ha for Kc	odai
0N1,6	DIBUIUS	2005	2006	2007	2008	2009	2005	2006	2007	2008	2009	2005	2006	2007	2008	2009
	Kancheepuram	19408	23911	18453	17044	18546	60/19	65034	60437	61791	60625	27603	14162	12466	12039	11849
2	Thiruvallur	39196	44682	39031	39812	37197	39047	29668	29615	31119	31644	18751	15317	10066	11309	12101
3	Cuddalore	23555	21336	17896	17646	18779	85331	79079	79760	85548	88010	5405	5025	5142	4623	4728
4	Villupuram	35918	28374	28594	25942	24880	115530	107964	105715	109978	114085	16987	8445	11094	10721	9489
5	Vellore	7245	10079	10489	10230	9741	19942	16728	17667	18110	16309	30976	14880	16170	19077	13715
9	Thiruvannamalai	27958	23108	20831	18540	21958	75525	63095	58947	40212	57727	39261	25256	32370	43134	25492
7	Salem	10058	8423	6072	7806	7858	23052	17771	14609	19749	13963	4218	1289	1030	2374	2561
8	Namakkal	5463	7023	6971	7613	2934	12174	7661	5197	6192	7540	1196	538	37	104	213
6	Dharmapuri	10082	7673	3890	8093	7329	14106	11089	13710	10919	10658	4835	2300	1201	1356	2323
10	Krishnagiri	8031	7910	6564	5930	6641	11935	8955	7662	7954	8591	2014	1025	756	737	1258
11	Coimbatore	1206	1470	1544	1623	1257	4545	3803	4550	939	1519	1655	948	385	11	41
12	Thiruppur	This distr	ict is started	recently and	d hence then	re is no suffic	cient data for p	prediction analy	'SiS							
13	Erode	12787	10849	9962	8945	9207	29525	26745	27091	26607	27448	1227	954	1307	2501	1459
14	Tiruchirapalli	9909	2669	5120	6953	6816	66579	62906	53207	61962	55341	6931	1819	2962	3615	2139
15	Karur	Rice not (cultivated in	this season			17711	13341	12121	15190	14580	687	404	312	438	421
16	Perambalur	2033	2637	3262	512	764	42669	38261	34183	8854	10166	1250	1032	676	3033	1159
17	Ariyalur	This distr	ict is started	recently and	d hence thei	re is no suffic	cient data for p	rediction analy	'Sis							
18	Pudukottai	1499	1079	<i>L</i> 66	534	417	94268	91989	87396	95505	94593	219	297	272	347	292
19	Thanjavur	23440	33264	20922	37177	22037	128668	128954	126227	135261	135621	2793	2025	3079	4656	5280
20	Thiruvarur	10416	32214	9034	30932	13270	141455	142804	140645	143724	145489	4227	1882	1950	3384	7493
21	Nagapattinam	24213	30774	25189	34389	27252	132608	134051	128826	135764	129814	1279	889	25	687	68L
22	Madurai	5564	8924	10342	11600	3944	62455	54353	48088	51371	43081	2977	3953	3434	3728	3961
23	Theni	5307	5161	5155	5372	5605	10204	9554	9054	9349	7606	183	200	191	858	699
24	Dindigul	3250	2451	2139	1520	1630	16092	12944	12785	15469	13421	4393	3212	2352	2649	1596
25	Ramanathapuram	Rice not (cultivated in	this season			127395	128005	122184	127196	132451	2346	2118	1587	1599	1434
26	Virudhunagar	Rice not (cultivated in	this season			27779	30503	25683	29434	24951	2997	2232	2520	2810	1666
27	Sivagangai	Rice not (cultivated in	this season			89924	81232	76623	80748	77332	Rice not o	cultivated in	this season		
28	Tirunelveli	19131	22527	25551	27075	18604	53947	64760	54637	57651	65628	13319	4597	3523	6594	1762
29	Thoothukudi	7940	7970	6030	8168	6995	10167	9865	8663	12985	11317	1825	3541	3363	1248	1237
30	The-Nilgiris	1430	1249	1110	775	509	Rice not cul	tivated in this s	season			Rice not (cultivated in	this season		
31	Kanyakumari	10669	10538	10121	8928	8534	11566	10868	10228	9259	8773	Rice not (cultivated in	this season		
	No. of districts cultiva	ting rice in	Kuruvai sea:	son = 25			No. of distri	cts cultivating	rice in Samba s.	eason = 28		No. of dis	stricts cultiva	tting rice in]	Kodai = 26	

Table A.1: FFBPNN method of predicted area of rice cultivation in different districts for three seasons

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

Districts		Predict	ed area using	5 best fitting 1	model in Kur	ruvai	Prec	licted area usi	ng best fitting	g model in Sa	tmba	Predic	ted area using	g best fitting	model in K	odai
2005	2005		2006	2007	2008	2009	2005	2006	2007	2008	2009	2005	2006	2007	2008	2009
Kancheepuram 21191	21191		20332	19472	18613	17754	90629	64243	61861	60761	60942	26522	17208	11861	10482	13070
Thiruvallur 41757	41757		40870	39984	39097	38210	37849	31935	29073	29264	32506	19005	14071	11273	10609	12081
Cuddalore 24037	24037		20593	18562	17945	18741	84581	80935	80508	83300	89312	5352	5155	4972	4801	4642
Villupuram 34407	34407		31032	28263	25950	23989	115190	108705	106485	108530	114840	14973	12587	10859	9549	8522
Vellore 7484	7484		9566	10603	9541	10594	19527	17609	17061	17885	20079	28240	21436	17277	14472	12452
Thiruvannamalai 28411	28411		23214	20377	19900	21784	77545	61990	52906	50295	54155	35035	34069	33103	32137	31171
Salem 10056	10056		7956	6921	6952	8049	21695	19354	17471	15923	14628	3942	2040	1257	3050	1594
Namakkal 5083	5083		7161	7556	6267	3295	11834	7507	5349	5360	7539	1204	513	123	33	244
Dharmapuri 9993	9993		7068	5754	6050	7958	13593	12754	12014	11355	10766	4732	2366	1179	1172	2345
Krishnagiri 8084	8084		7470	6943	6486	6086	11789	9130	7731	7592	8713	1999	1119	705	759	1279
Coimbatore 1193	1193		1488	1603	1539	1295	4854	3963	3071	2180	1288	1652	879	344	46	-14
Thiruppur	-						Vewly formed	l district. It ha	s no data to p	process and he	ence omitted		-			
Erode 12743	12743		10922	9710	9109	9117	29244	27441	26554	26582	27527	1087	1289	1490	1691	1892
Tiruchirapalli 6103	6103		6243	6387	6534	6685	62569	62881	60407	58122	56006	6478	3808	2697	2089	1705
Karur		1	Rice not cu	Iltivated in th	is season		17136	14164	12879	13282	15371	999	456	352	356	467
Perambalur 1814	1814		3069	2664	1185	271	42086	40686	29067	15345	5987	1066	1248	1430	1612	1794
Ariyalur							Vewly formed	l district. It ha	s no data to p	process and he	ence omitted					
Pudukottai 1447	1447		1176	905	634	363	94067	91176	90489	92009	95733	221	276	307	315	299
Thanjavur 26744	26744		26956	27168	27380	27591	126895	128859	130883	132970	135121	2333	2723	3268	4084	5444
Thiruvarur 18279	18279		18726	19173	19620	20067	141903	141501	141967	143299	145499	4136	1880	1664	3487	7349
Nagapattinam 26423	26423		27394	28364	29334	30302	132988	132600	132213	131825	131438	1301	645	347	409	828
Madurai 4748	4748		9447	10976	9334	4522	61147	55706	51159	47302	43989	3262	3436	3611	3785	3959
Theni 5306	5306		5177	5187	5338	5629	10167	9584	9228	9100	6616	94	257	420	583	746
Dindigul 3234	3234		2500	2038	1721	1489	14764	14439	14128	13831	13546	4366	3250	2589	2152	1841
Ramanathapuram	ł	<u> </u>	tice not cu	iltivated in th	iis season		128269	124887	124380	126748	131990	2362	2013	1755	1555	1397
Virudhunagar	I	1	Vice not cu	Iltivated in th	is season		29015	28342	27670	26998	26325	2862	2653	2445	2237	2028
Sivagangai		_	Rice not cu	iltivated in th	iis season		88975	82275	78331	77141	78707		Rice not ci	ultivated in t	his season	
Tirunelveli 18154	18154		23731	26336	24812	19845	56073	57610	59231	60944	62758	13059	6237	4098	3052	2432
Thoothukudi 7784	7784		7593	7412	7239	7074	9532	10011	10540	11127	11782	1963	3411	3272	1732	506
The-Nilgiris 1430	1430		1277	1072	814	504		Rice not o	cultivated in t	this season			Rice not ci	ultivated in t	his season	
Kanyakumari 10731	10731		10462	9957	9250	8389	11578	10858	10138	9419	8700		Rice not ci	ultivated in t	his season	
No. of d	No. of d	of d	istricts cul	ltivating rice	in Kuruvai =	- 25	Nc	o. of districts o	cultivating ric	e in Samba =	= 28	No.	. of districts c	cultivating rid	ce in Kodai =	23

Table A.2: Predicted area of rice cultivation based on the best fitting model using Curve Expert software

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

S,No	Districts		% Error in .	Area of Kurı	IVai season		Mean		% Error in	Area of San	iba season		Mean		% Error ir	1 Area of Kod	ai season		Mean
		2005	2006	2007	2008	2009	Error	2005	2006	2007	2008	2009	Error	2005	2006	2007	2008	2009	Error
1	Kancheepuram	-9.18	14.97	-5.52	-9.21	4.27	-0.94	-0.29	1.22	-2.36	1.67	-0.52	-0.06	3.92	-21.51	4.85	12.93	-10.30	-2.02
2	Thiruvallur	-6.53	8.53	-2.44	1.80	-2.72	-0.27	3.07	-7.64	1.83	5.96	-2.73	0.10	-1.35	8.13	-11.99	6.19	0.16	0.23
3	Cuddalore	-2.05	3.48	-3.72	-1.69	0.20	-0.75	0.88	-2.35	-0.94	2.63	-1.48	-0.25	0.98	-2.58	3.31	-3.86	1.81	-0.07
4	Villupuram	4.21	-9.37	1.16	-0.03	3.58	-0.09	0.29	-0.69	-0.73	1.32	-0.66	-0.09	11.85	-49.05	2.12	10.93	10.19	-2.79
5	Vellore	-3.30	5.09	-1.08	-3.56	2.05	-0.16	2.08	-5.26	3.43	1.24	-23.12	-4.33	8.83	-44.06	-6.85	24.14	9.21	-1.74
9	Thiruvannanalai	-1.62	-0.46	2.18	-7.34	0.79	-1.29	-2.67	7.75	10.25	-25.07	6.19	-1.91	10.76	-34.89	-2.26	25.50	-22.28	-4.63
7	Salem	0.02	5.55	-13.99	10.94	-2.43	0.02	5.89	-8.91	-19.59	19.37	-4.76	-1.60	6.55	-58.26	-22.09	32.84	-19.11	-12.01
8	Namakkal	6.96	-1.97	-8.39	17.67	-12.32	0.39	2.79	2.00	-2.93	13.44	0.02	3.06	-0.64	4.61	-232.62	68.05	-14.40	-35.00
9	Dharmapuri	0.89	7.89	-47.91	25.24	-8.58	4.50	3.64	-15.02	12.37	-4.00	-1.01	-0.80	2.13	-2.86	1.82	13.56	-0.94	2.74
10	Krishnagiri	-0.66	5.57	-5.78	-9.38	8.36	-0.38	1.23	-1.95	-0.90	4.55	-1.42	0.30	0.73	-9.13	6.74	-2.94	-1.70	-1.26
11	Coimbatore	1.04	-1.22	-3.82	5.18	-3.06	-0.37	-6.81	-4.20	32.50	-132.12	15.21	-19.08	0.18	7.26	10.69	-319.3	134.24	-33.39
12	Thiruppur						This d	strict is start	ed recently ar	nd hence the	re is no suffi	cient data for	r prediction	analysis					
13	Erode	0.34	-0.67	2.53	-1.83	76:0	0.27	0.95	-2.60	1.98	0.09	-0.29	0.03	11.39	-35.07	-13.98	32.40	-29.66	-6.98
14	Tiruchirapalli	-0.61	10.77	-24.75	6.03	1.93	-1.33	1.52	0.04	-13.53	6.20	-1.20	-1.40	6.53	-109.35	8.93	42.22	20.31	-6.27
15	Kanur		Rice	e not cultivat	ed in this sea	ISON		3.25	-6.17	-6.26	12.56	-5.42	-0.41	3.01	-12.82	-12.96	18.67	-10.96	-3.01
16	Perambalur	10.78	-16.39	18.35	-131.52	64.59	-10.84	1.37	-6.34	14.97	-73.31	41.11	-4.44	14.72	-20.95	-111.56	46.85	-54.76	-25.14
17	Ariyalur						This d	istrict is start	ed recently ar	nd hence the	re is no suffi	cient data for	r prediction	analysis					
18	Pudukottai	3.47	-9.00	9.21	-18.78	12.85	-0.45	0.21	0.88	-3.54	3.66	-1.20	0.00	-0.72	7.16	-12.94	9.24	-2.38	0.07
19	Thanjavur	-14.10	18.96	-29.85	26.35	-25.20	4.77	1.38	0.07	-3.69	1.69	0.37	-0.03	16.46	-34.45	-6.13	12.28	-3.10	-2.99
20	Thiruvarur	-75.49	41.87	-112.24	36.57	-51.22	-32.10	-0.32	0.91	-0.94	0.30	-0.01	-0.01	2.16	0.09	14.66	-3.04	1.92	3.16
21	Nagapattinam	-9.13	10.98	-12.61	14.70	-11.19	-1.45	-0.29	1.08	-2.63	2.90	-1.25	-0.04	-1.72	27.45	-1289.84	40.53	4.96	-254.7
22	Madurai	14.66	-5.86	-6.13	19.53	-14.66	1.51	2.09	-2.49	-6.39	7.92	-2.11	-0.19	-9.57	13.07	-5.15	-1.53	0.05	-0.62
23	Theni	0.01	-0.31	-0.63	0.63	-0.43	-0.14	0.37	-0.31	-1.92	2.66	-1.12	-0.07	48.53	-28.59	-119.99	32.03	-11.54	-15.91
24	Dindigul	0.50	-2.00	4.71	-13.20	8.66	-0.27	8.25	-11.55	-10.51	10.59	-0.93	-0.83	0.62	-1.19	-10.08	18.77	-15.37	-1.45
25	Ramanathapuram		Rice	e not cultivat	ed in this sea	ISON		-0.69	2.44	-1.80	0.35	0.35	0.13	-0.66	4.94	-10.57	2.74	2.61	-0.19
26	Virudhunagar		Rice	e not cultivat	ed in this sea	ISON		-4.45	7.08	-7.74	8.28	-5.51	-0.47	4.51	-18.88	2.98	20.41	-21.74	-2.55
27	Sivagangai		Rice	e not cultivat	ed in this sea	ISON		1.06	-1.28	-2.23	4.47	-1.78	0.05		Rice	e not cultivate	d in this seas	UU	
28	Tirunelveli	5.11	-5.35	-3.07	8.36	-6.67	-0.32	-3.94	11.04	-8.41	-5.71	4.37	-0.53	1.95	-35.67	-16.32	53.71	-38.03	-6.87
29	Thoothukudi	1.97	4.73	-22.91	11.37	-1.14	-1.20	6.24	-1.48	-21.66	14.31	4.11	-1.34	-7.56	3.66	2.70	-38.81	59.08	3.82
30	The-Nilgiris	-0.03	-2.26	3.44	-5.04	0.97	-0.58		Rice	not cultivate	ed in this sea	son			Rice	e not cultivate	d in this seas	0U	
31	Kanyakumari	-0.59	0.72	1.62	-3.61	1.70	-0.03	-0.11	0.09	0.88	-1.73	0.83	-0.01		Rice	e not cultivate	d in this seas	UU	
		Minimum l	Mean Error				-32.10	Minimum	Mean Error				-19.08	Minimum	1 Mean Error				-25.14
		Maximum	Mean Erroi				1.51	Maximum	Mean Error				3.06	Maximun	n Mean Error				3.82
		Average of	5 years mea	an errors			-2.40	Average o	f 5 years mear	n errors			-1.22	Average (of 5 years mea	n errors			-3.76
		Std deviation	on of mean (error			6.64	Std deviati	on of mean ei	ror			3.76	Std devia	tion of mean e	ITOT			6.52
		No. of disti	ricts taken u	p for predicti	0U		25	No. of dist	ricts taken up	for predictic	on studies		28	No. of dis	stricts taken up	for predictio	u		23

Table A.3: ARE percent between FFBPNN and the best fitting model of predicted area of rice cultivation in different districts for three seasons

= 26

of districts cultivating rice in Kodai

Ň.

No. of districts cultivating rice in Samba = 28

districts cultivating rice in Kuruvai

No. of (

Kanyakumari

The-Nilgiris

Thoothukudi

lirunelveli

<u> ဆ</u>ုဆု ဆ

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 10, October 2015

Table A.4: FFBPNN method of predicted rice production in different districts for three seasons

Kancheepu Thiruvallur Cuddalore

Districts

S.No

Villupuram

Vellore

Namakkal

 $\infty \circ$

Dharmapuri

Krishnagiri

 \subseteq

Coimbatore

Thiruppur

Salem

Thiruvannamalai

Erode

l'iruchirapalli

4 5

Perambaluı

Karur

Nagapattinam

Thiruvarur

Thanavur

5 19

Pudukottai

Ariyalur

Madurai

Theni

Dindigul

2 2 2 2 2

Ramanathapuram

Virudhunagai Sivagangai

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

Codai	2009	48370	36958	14883	26803	47135	104884	11914	809	8122	4409	976		6461	7678	1575	4840		1038	17728	26849	2920	14849	2611	8226	4742	5129		11631	5304			
model in K	2008	43778	40735	15518	30151	52742	105639	5588	254	4730	2917	1960		5948	8989	1279	4122		1126	13268	13865	1686	13635	2062	10153	5380	6999	his season	13748	6732	his season	his season	1.1.1.1.1
g best fitting	2007	47974	45377	16154	34458	59872	106394	3988	555	4544	2533	2945		5435	10840	1258	3588		1101	10599	6982	1465	12420	1514	12081	6217	8210	ultivated in t	16809	8159	ultivated in t	ultivated in t	1
ted area using	2006	60957	51220	16789	40209	69242	107148	7114	1713	7563	3259	3931		4922	13656	1511	3177		963	8822	6198	2259	11204	965	14008	7365	9754	Rice not ci	21630	9587	Rice not ci	Rice not ci	of distributo o
Predict	2005	82728	58799	17424	48273	82103	107903	14964	3727	13788	5093	4918		4409	18454	2039	2850		712	7555	11515	4067	9866	417	15935	9034	11298		30343	11015			No
nba	2009	202591	95999	231253	355724	59530	154790	66572	32929	40106	32303	5756	ice omitted	124809	227949	64314	43243	ice omitted	170514	302730	287325	270850	178173	44439	62991	239137	56411	151457	259634	57827		37886	30
model in San	2008	232271	106632	223553	354487	57916	166161	67895	24967	44630	27369	13415	ocess and hen	122185	223353	52638	82710	ocess and hen	184707	326625	288507	260543	185056	42890	55686	138608	88705	103579	249887	51692	cient data	40995	in Combo -
g best fitting	2007	236625	108329	215853	353250	56302	179349	69273	24309	46606	25004	16847	no data to pr	119561	218756	45767	106681	no data to pr	201496	350521	289689	250236	192499	41444	51664	108513	113442	93381	240506	46729	due to insuffi	44663	ltivatina riva
ted area usin	2006	215655	101090	208153	352013	54688	194828	70710	30955	45673	25209	16051	listrict. It has	116937	214160	43701	115157	listrict. It has	221663	374416	290871	239929	200575	40091	50923	148852	117990	120861	231477	42631	Discarded	49058	of dictricte or
Predi	2005	169359	84915	200453	350776	53075	213252	72210	44904	42003	27984	11028	ewly formed o	114313	209563	46440	108137	ewly formed o	246344	398312	292052	229622	209368	38823	53464	259625	99807	186021	222788	39191		54417	No
ivai	2009	66124	122970	63697	72825	35290	63261	30378	16898	32442	27621	4550	Ne	39080	26007		2672	Ne	1419	78266	77613	91200	17928	31608	0969				80082	36312	1838	38241	ž
odel in Kurr	2008	75255	149655	61844	80325	37503	66139	23207	26031	24763	22443	6129		42391	25061	s season	5982		2388	102393	70311	109953	38152	28781	7564	s season	s season	s season	102515	34665	3081	42890	$K_{\rm IIIIIVal} = 2$
best fitting m	2007	77499	159259	63220	89558	35264	69294	22241	29005	21612	20282	6363		46319	24114	tivated in this	8459		3335	108586	63001	107552	44710	26415	8169	tivated in this	tivated in this	tivated in this	107686	33159	3949	45246	ivatino rice ii
od area using	2006	72858	151781	67827	101202	29340	72769	27479	25822	22986	21136	5091		51055	23167	Rice not cul	7556		3867	96845	55684	85356	37604	24407	8773	Rice not cul-	Rice not cul	Rice not cul	92823	31777	4444	45307	Aistricts onlt
Predicte	2005	61330	127221	75664	116344	21600	76615	38921	16480	28888	25007	3140		56876	22219		4263		3722	67171	48359	54960	16832	22682	9377				65656	30504	4564	43074	No of
Districts	<u> </u>	Kancheepuram	Thiruvallur	Cuddalore	Villupuram	Vellore	Thiruvannamalai	Salem	Namakkal	Dharmapuri	Krishnagiri	Coimbatore	Thiruppur	Erode	Tiruchirapalli	Karur	Perambalur	Ariyalur	Pudukottai	Thanjavur	Thiruvarur	Nagapattinam	Madurai	Theni	Dindigul	Ramanathapuram	Virudhunagar	Sivagangai	Tirunelveli	Thoothukudi	The-Nilgiris	Kanyakumari	
S,No		1	2	3	4	5	9	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	

Table A.5: Predicted rice production based on the best fitting model using Curve Expert software

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 10, October 2015

S,No	Districts		% Error in .	Area of Ku	ruvai seasc	u	Mean		% Error in .	Area of San	nba season		Mean		% Error in	Area of Ko	odai season		Mean
		2005	2006	2007	2008	2009	Error	2005	2006	2007	2008	2009	Error	2005	2006	2007	2008	2009	Error
-	Kancheepuram	-2.43	4.03	4.79	0.82	-0.36	-0.54	-12.63	17.04	-5.42	-12.50	7.35	-1.23	1.08	-2.89	-2.71	6.61	-3.17	-0.22
7	Thiruvallur	3.02	-3.24	-2.45	7.27	-3.61	0.20	-2.59	10.02	-12.98	7.11	-0.62	0.19	-2.04	13.34	-30.87	-2.66	12.43	-1.96
3	Cuddalore	-2.31	4.20	3.25	-9.83	3.85	-0.17	-56.07	31.38	14.35	-45.37	4.33	-10.28	-9.26	8.08	9.05	-12.54	0.83	-0.77
4	Villupuram	5.28	-17.09	6.22	1.19	2.12	-0.46	-4.65	7.76	-1.35	-5.10	2.16	-0.23	10.45	-43.43	5.03	7.39	10.26	-2.06
5	Vellore	1.18	-1.82	66:0	-0.09	-0.12	0.03	1.55	-11.32	4.19	12.69	-11.52	-0.88	10.45	-35.11	-10.90	22.52	0.15	-2.58
9	Thiruvannamalai	4.78	-16.83	11.80	-4.61	0.47	-0.88	4.83	8.85	7.81	-41.41	13.60	-3.20	1.59	-19.03	5.69	23.01	-27.48	-3.24
7	Salem	0.80	11.26	-18.52	15.03	0.02	1.72	12.16	-10.53	-39.48	20.48	-1.71	-3.82	5.56	-45.89	-9.17	27.29	-12.11	-6.86
8	Namakkal	18.87	-20.42	-19.62	32.31	-37.05	-5.18	0.15	9.52	-16.16	12.36	-0.18	1.14	-4.63	15.24	-344.38	28.38	-8.20	-62.72
6	Dharmapuri	2.09	2.67	-44.86	24.24	-10.31	-5.23	-0.20	-3.02	8.63	-11.93	4.28	-0.45	1.29	6.87	-1.67	8.46	2.89	3.57
10	Krishnagiri	0.75	-2.95	4.79	-2.94	0.75	0.08	-1.65	6.67	-3.93	0.14	131	0.51	-0.45	6.74	-9.61	5.70	0.15	0.50
	Coimbatore	13.65	-0.93	-2.79	4.34	-3.34	2.19	6.43	-6.02	0.43	9.72	-7.85	0.54	6.21	-2.74	-118.80	53.00	-578.02	-128.07
12	Thiruppur							This district is	started recently	and hence the	re is no sufficie	nt data for prec	liction analysis						
13	Erode	2.51	-6.59	4.05	-3.67	3.22	-0.10	1.56	-6.88	-3.96	16.68	-12.82	-1.08	13.51	-14.67	-51.81	32.36	-19.38	-8.00
14	Tiruchirapalli	-1.50	4.73	-14.02	13.15	-6.78	-0.88	-8.28	14.94	-11.50	-1.65	1.97	-0.90	13.43	-115.22	-8.56	34.86	18.10	-11.48
15	Karur		1	Rice not cultiva	ted in this seas	son		-0.56	6.53	-16.69	10.27	-2.79	-0.65	0.36	0.45	-18.91	14.38	-6.54	-2.05
16	Perambalur	7.88	-7.62	3.76	0.86	-9.53	-0.93	-1.37	5.36	-24.91	18.15	-20.57	4.67	12.66	3.35	-191.74	38.58	-18.98	-31.22
17	Ariyalur							This district is	started recently	and hence the	re is no sufficie	nt data for prec	liction analysis						
18	Pudukottai	3.59	-12.02	13.40	-13.75	2.80	-1.20	-8.02	20.67	-30.18	-4.66	8.31	-2.78	-9.25	13.71	-19.40	4.91	-1.26	-2.26
19	Thanjavur	1.28	6.75	-39.12	23.97	-17.69	-4.96	-23.22	23.18	10.18	-56.69	11.80	-6.95	7.74	-27.86	69.9	5.41	-1.93	-1.99
20	Thiruvarur	-75.55	33.94	-95.46	45.64	-86.80	-35.65	-43.21	41.30	-6.56	-359.86	30.67	-67.53	3.76	5.77	3.41	4.52	1.16	3.72
21	Nagapattinam	17.34	-16.86	-5.91	13.66	-11:37	-0.63	-245.58	26.71	-33.33	-172.95	22.03	-74.62	-9.75	32.36	-1623.9	28.06	-5.41	-315.73
22	Madurai	15.03	-4.47	8.75	20.03	-16.99	0.97	-1.08	1.44	-18.95	10.16	-2.38	-0.96	-32.35	24.40	-4.09	-0.78	4.08	-3.38
23	Theni	5.55	-7.94	-6.60	10.34	-4.03	-0.54	4,41	1.67	-14.90	5.25	1.20	-0.47	36.37	-16.72	-86.20	29.52	-11.19	-9.64
24	Dindigul	-16.58	18.05	7.34	-30.31	6.86	-2.93	-2.59	5.88	-3.22	-1.98	123	-0.14	-5.22	14.77	-34.66	17.13	-8.24	-3.24
25	Ramanathapuram		İ	Rice not cultiva	ted in this seas	lon		-5.08	30.53	-342.91	29.83	4.04	-58.33	-1.15	7.44	-15.58	1.36	5.80	-0.43
26	Virudhunagar			Rice not cultiva	ted in this seas	uos		-14.69	20.76	-34.24	848	5.41	-2.85	1.42	-4.68	3.87	-0.07	-1.04	-0.10
27	Sivagangai		4	Rice not cultiva	ted in this seas	son		3.49	-10.92	-18.86	21.42	89:6-	-2.91		Ri	ce not cultivat	ed in this seaso	u	
28	Tinnelveli	60.9	-5.70	-2.48	7.40	-6.18	-0.18	-7.65	17.39	-15.73	-5.69	4.89	-1.36	5.78	-25.24	-52.24	49.22	-55.75	-15.65
29	Thoothukudi	6.32	-0.34	-27.72	16.92	-5.23	-2.01	5.24	7.28	-36.77	14.42	-2.79	-2.52	-39.57	41.37	-77.11	-11.53	10.27	-15.31
30	The-Nilgiris	3.22	-11.23	7.88	-1.14	-3.11	-0.87		Ri	ce not cultivate	d in this season				Ri	ce not cultivat	ed in this sease	u	
31	Kanyakumari	70.07	-2.83	2.87	-1.16	0.12	-0.01	-0.56	2.02	-2.38	0.64	0.17	-0.02		Ri	ce not cultivat	ed in this seaso	u	
		Minimui	n to Maximu	ım Mean Eı	TOT		-35.65	Minimum N	Aean Error				-74.62	Minimum	Mean Error				-31.22
		Maximu	m Mean Erro	.or			2.19	Maximum 1	Mean Error				1.14	Maximum	Mean Error				3.72
		Average	of 5 years m	lean errors			-2.33	Average of	5 years mean	errors			-8.80	Average o	f 5 years mea	th errors			4.98
		Std devia	ation of mean	n error			7.19	Std deviatic	n of mean en	0T			20.73	Std deviati	ion of mean e	DITOL			7.71
		No. of d	stricts taken	up for predic	tion		25	No. of distr	icts taken up 1	or prediction	studies		28	No. of dist	ricts taken uj	p for predicti	0U		23

Table A.6: ARE percent between FFBPNN and the best fitting model of predicted rice production in different districts for three seasons