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ABSTRACT: Parkinson’s Disease (PD) is a neurodegenerative disorder that gradually impairs motor function and 

speech. Early and precise stage-wise diagnosis is essential for optimizing treatment strategies and improving patient 

outcomes. In this study, we have developed a deep learning-based model that classifies the severity of PD by analyzing 

voice recordings. Key speech features such as chroma, spectral contrast, tonnetz, jitter, shimmer, and harmonic-to-noise 

ratio were extracted using the Librosa library to capture both frequency-based and vocal stability characteristics. The 

model is built on a hybrid CNN and BiLSTM architecture, where the convolutional layers extract spatial patterns from 

audio spectrograms, and the BiLSTM layers track temporal changes in speech over time. Audio samples were 

preprocessed through normalization and frame slicing, and we used data augmentation techniques to handle class 

imbalance. To make the model user-friendly, we have built a Streamlit-based web app where users can upload their 

audio recordings and get immediate feedback, classifying their speech as Healthy, Mild, Moderate, or Severe. Using 

accuracy, precision, recall, F1-score and AUC as benchmarks, we validated the system’s performance. The results 

highlight its potential as a practical, non-invasive solution for early Parkinson’s detection and stage classification via 

speech analysis. 
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I. INTRODUCTION 

 

Parkinson’s Disease (PD) is a chronic and progressively debilitating neurological disorder that impacts a person’s 
motor skills, speech, and overall quality of life. One of the earliest signs of PD often appears in speech, where subtle 

changes can signal the onset of the disease well before more visible motor symptoms emerge [4]. This makes vocal 

biomarkers an increasingly valuable tool for early diagnosis [6]. Traditional methods like neurological examinations 

and imaging techniques such as MRI or PET scans, while effective, tend to be expensive, time-consuming, and not 

ideal for continuous monitoring [1]. These limitations have driven growing interest in computational approaches, 

especially speech-based systems, for detecting PD and evaluating its progression [2]. 

 

 Traditionally, speech-based diagnostic tools have used basic binary classification, separating healthy subjects from 

Parkinson’s patients [6]. However, clinical practice requires a more detailed understanding — it's not just about 

identifying the presence of the disease, but also assessing its severity across different stages [8]. A single voice sample 

may reveal subtle differences indicative of mild, moderate, or severe PD, making multi-class classification a much 

more meaningful goal [9]. Despite this, many existing machine learning approaches still depend heavily on handcrafted 

feature sets or relatively shallow classifiers, which often fall short when it comes to capturing the complex, non-linear 

patterns in speech that evolve with disease progression [4]. 

 

 To overcome these limitations, recent advances in deep learning offer significant potential [9]. Approaches using 

CNN architectures excel at identifying spatial patterns in spectrograms, while LSTM networks effectively model time-

based relationships in speech data [9]. However, existing solutions often treat these features separately, missing 
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opportunities to detect subtle vocal variations linked to Parkinson’s progression stages [4]. Our work bridges this 

critical limitation by introducing a novel architecture that merges CNN processing of spectrogram features with 

BiLSTM analysis of evolving speech characteristics, creating a unified framework for stage-specific detection. 

 

    For feature extraction, we use a diverse set of indicators including chroma, spectral contrast, tonnetz, jitter, shimmer, 

and Harmonic-to-Noise Ratio (HNR) to build a rich and comprehensive audio profile [4]. Preprocessing steps such as 

Z-score normalization and Pearson correlation-based filtering are also incorporated to minimize redundancy and focus 

on the most meaningful speech characteristics [1]. To mitigate class imbalance issues—especially when certain 

Parkinson’s stages have limited samples—we enhanced our training data through augmentation techniques, improving 

the model’s robustness and generalization capability [9]. 

 

While previous research has focused primarily on model architecture, our contribution extends to practical 

implementation [7]. The developed Streamlit web application enables real-time PD severity classification through 

intuitive audio uploads, bridging the gap between research and clinical utility [7]. This real-time capability can greatly 

enhance its use in both clinical environments and remote healthcare settings [8]. Rather than depending on costly 

diagnostic equipment or focusing solely on binary classification, this model aims to offer a scalable, affordable, and 

non-invasive solution for monitoring Parkinson’s Disease over time [2]. 

 

This paper progresses through five key sections: First, we examine prior research and its limitations (Section 2). 

Next, we detail our methodology covering feature extraction, model architecture, and interface design (Section 3). 

Results and analysis follow in Section 4, with conclusions in Section 5. 

 

II. LITERATURE REVIEW 

 

In recent years, speech-based analysis has gained considerable attention as a non-invasive, cost-effective, and 

scalable method for diagnosing Parkinson’s Disease (PD) [4]. Unlike traditional clinical assessments, which often 

involve expensive imaging and neurological examinations, speech analysis offers a promising alternative for both early 

detection and continuous monitoring [1]. Researchers have explored a wide range of machine learning and deep 

learning techniques to extract meaningful patterns from voice data and classify PD severity [8]. However, much of the 

early work in this area focused primarily on binary classification—simply distinguishing PD patients from healthy 

individuals—without addressing the more clinically relevant need to assess disease progression across multiple stages 

[6]. 

 

For instance, Jaisankar et al. (2025) developed a detection system using RFE for feature selection paired with 

logistic regression classification to identify early PD markers [1]. They introduced techniques like KMeansSMOTE for 

class balancing and used SHAP values to improve model interpretability [1]. While the approach achieved notable 

accuracy, it struggled to capture the complex, non-linear relationships and time-sequential patterns inherent in speech 

signals [1]. Similarly, Jyothish Lal et al. (2024) proposed a visibility graph method to transform multimodal biosignals, 

such as speech and gait data, into network graphs for enhanced severity classification [2]. Although the approach 

improved interpretability, it required high-quality multimodal data and came with significant computational costs, 

limiting its practical application [2]. 

 

Rather than voice analysis, Shin et al. (2024) quantified movement disorders through motion capture, demonstrating 

that SVM and Random Forest models could reliably classify PD severity based on kinematic data [3]. However, their 

method focused solely on motor symptoms and did not incorporate vocal biomarkers, making it less comprehensive for 

a full PD evaluation [3]. In another important contribution, Liu et al. (2023) developed a CNN-based system that 

analyzed phonation and articulation features such as MFCC and eGeMAPS across multiple languages [4]. While the 

model performed impressively, it was highly dependent on clean, high-quality recordings, which might not always be 

feasible in real-world scenarios [4]. 

 

Beyond speech-focused models, Sarapata et al. (2023) explored deep learning for video-based activity recognition by 

analyzing spatio-temporal pose estimations [5]. Their system achieved human-level accuracy in assessing motor 

symptoms but was highly computationally intensive and unsuitable for speech-only diagnosis [5]. Pah et al. (2023) 

evaluated the effectiveness of SVM classifiers using datasets like PC-GITA and Saarbrücken to distinguish PD voices 
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from those with other disorders [6]. The same architectures that excelled at binary detection failed to maintain 

comparable performance when extended to the more complex task of multi-stage severity classification [6]. 

Navamani et al. (2024) introduced an interpretable XGBoost-based model for PD prediction that used SHAP 

explanations to highlight important features [7]. Although the system handled class imbalance well, it lacked deep 

learning components needed to fully capture the intricate temporal dynamics of speech [7]. Hashim et al. (2024) 

attempted to improve diagnostic accuracy using a stacking ensemble of classifiers like SVM and Gradient Boosting, 

achieving strong results through bootstrapping [8]. Nevertheless, their system remained computationally expensive and 

did not leverage deep neural architectures [8]. 

 

Meanwhile, Pérez et al. (2024) experimented with Generative Adversarial Networks (GANs) to enhance voice-based 

time series classification through synthetic data generation [9]. Despite the innovative approach, models trained directly 

on raw waveforms underperformed compared to spectrogram-based systems, and training costs remained a significant 

concern [9]. 

 

Despite the progress made, significant challenges still exist [4]. Many models either focus solely on binary 

classification or require complex multimodal datasets, limiting their practicality for widespread use [2]. Moreover, deep 

learning models that can fully exploit the sequential and spatial features of speech signals for stage-wise severity 

prediction are still underexplored [4]. Combining audio-based CNN-BiLSTM architectures with structured 

preprocessing and intelligent feature optimization holds great promise for building real-time, accessible, and accurate 

PD diagnosis systems that can make a real impact both clinically and remotely [9]. 

 

III. METHODOLOGY 

 

   This study presents a structured framework for the early prediction and severity classification of Parkinson’s Disease 

(PD) using speech signal analysis, as illustrated in Figure 1. The approach integrates advanced audio processing 

techniques with a deep learning-based model, and is organized into several key stages: data collection, feature 

extraction, preprocessing, model development using a hybrid CNN-BiLSTM architecture, and real-time user interface 

integration. 

 

 
 

Fig.1.  Proposed CNN-BiLSTM Hybrid Architecture 

 

A. Audio Preprocessing: 

    The voice recordings used in this study were taken from a benchmark dataset, with each file containing a sustained 

vowel phonation of the /a/ sound. To ensure consistency and prepare the data for analysis, many preprocessing steps 

were applied. All the audio samples were normalized and resampled to a common sampling rate to maintain uniformity 

across the dataset. Silence trimming was performed to remove non-informative segments at the beginning and end of 

the recordings, focusing the model's attention on meaningful speech components. Additionally, these audio files were 

divided into fixed-length frames, with padding applied where necessary to accommodate recordings of varying 

durations. 
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B. Feature Extraction: 

    We extracted key vocal biomarkers using Librosa’s audio processing capabilities, capturing a comprehensive range 

of acoustic characteristics associated with PD. Chroma features quantified pitch characteristics in the speech signals, 

while spectral contrast and tonnetz features provided insights into the harmonic and timbral properties of the voice. 

Moreover, jitter and shimmer metrics were calculated to measure pitch variability and amplitude instability—both 

common symptoms of vocal tremor. The Harmonic-to-Noise Ratio (HNR) was also computed to assess the breathiness 

and hoarseness often found in PD-affected speech. As shown in Figure 2, mutual information-based feature selection 

was used to rank the top 30 extracted features by their relevance to Parkinson’s classification, highlighting the most 

informative vocal attributes. 

 

 
 

Fig.2. Feature Selection by Mutual Information  

 

C. Dataset Preprocessing and Feature Scaling: 

    Before feeding the extracted features into the model,the data underwent further preprocessing to improve feature 

quality.We standardized the features via z-score normalization, centering them at zero with unit variance. Using 

Pearson correlation coefficients, we systematically identified and pruned interdependent features, optimizing the 

feature space to prevent overfitting while retaining diagnostic value. 

 

D. Dataset Splitting and Labeling: 

    To preserve class distribution, we applied stratified sampling when partitioning the data into training and test sets, 

ensuring equal representation of Healthy, Mild, Moderate, and Severe cases. Labels for disease severity were encoded 

numerically to prepare them for the classification model. 

 

E. Model Architecture: CNN + BiLSTM Hybrid: 

    Our hybrid architecture integrates CNNs to analyze spectral patterns in speech signals with BiLSTMs to model their 

sequential evolution—enabling comprehensive feature extraction across both frequency and time domains. CNN layers 

were used to extract spatial patterns from the spectrogram-like feature inputs, learning local acoustic structures that 

may indicate PD-related changes. The BiLSTM layers were designed to model temporal dependencies, processing 

sequences in both forward and backward directions to capture the progression of vocal signals over time. This 

architecture enabled precise identification of stage-specific vocal signatures, from subtle early-stage articulatory 

changes to pronounced late-stage speech degradation. 

 

F. Model Training and Optimization: 

    We trained the CNN-BiLSTM model with Adam optimization and categorical cross-entropy as the objective 

function. Training was conducted over 80 epochs with a batch size of 32, and 20% of the training data was reserved for 

validation. Early stopping and learning rate scheduling were employed as callbacks to prevent overfitting and ensure 

smoother convergence during training. 
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G. Performance Evaluation: 

    The model’s performance was evaluated using several key metrics suitable for multi-class classification. Accuracy 

was calculated to measure overall prediction correctness, while precision, recall, F1-score and AUC were computed for 

each class to provide a more detailed assessment of model quality. 

 

H. Streamlit-Based Real-Time UI: 

    To make the system accessible for practical use,we developed an interactive Streamlit-based interface for real-time 

PD severity visualization. In this platform, users can upload .wav audio recordings, trigger immediate predictions, and 

view the resulting classification into one of four categories: Healthy, Mild, Moderate, or Severe. This user-friendly 

interface paves the way for potential deployment in clinical settings or even at-home monitoring environments, offering 

a scalable, non-invasive solution for early Parkinson’s screening. 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

 

A. Dataset: 

    In order to evaluate the performance of the proposed multi-class Parkinson’s Disease (PD) classification model, we 

conducted experiments using a publicly available speech dataset that includes sustained individuals and patients with 

PD .The dataset is accompanied by a demographics file that includes participant ID, age, gender, and condition label 

(Healthy Control or PwPD), and the speech recordings are used to distinguish between four disease stages: Healthy, 

Mild, Moderate, and Severe. 

 

B. Metrics: 

    To assess the effectiveness and reliability of the proposed deep learning model, we use four key evaluation metrics 

commonly employed in multi-class classification: 

 

Accuracy 

Measures the proportion of all correct predictions (both positive and negative) out of all predictions made. 

    Accuracy = TP + TN / (TP + TN) + (FP + FN) 

Precision 

Measures the proportion of predicted positive labels that are actually correct. 

                   Precision = TP / (TP + FP) 

Recall 

Assesses the ability of the model to capture all actual positive labels. 

                   Recall = TP / (TP + FN) 

F1 Score 

The harmonic mean of Precision and Recall, balancing the trade-off between false positives and false negatives. 

     F1 Score = 2 × (Precision × Recall) / (Precision + Recall) 

AUC  

Measures the ability of the model to distinguish between positive and negative classes across all thresholds. 

                    AUC = ∫₀¹ TPR(FPR) d(FPR) 
 

C. Results and Visualization: 

    To evaluate the classification performance of the proposed models for Parkinson’s Disease (PD) severity prediction, 

many deep learning architectures were trained and tested. The models were assessed using key classification metrics: 

Accuracy, Precision, Recall, F1 Score, and AUC. These metrics collectively provide a balanced evaluation, especially 

crucial for multi-class classification tasks where both false positives and false negatives must be carefully monitored. 

 

    Table 1 represents a comparison of the performance metrics for all models. Among the evaluated models, the hybrid 

CNN-BiLSTM architecture achieved the best results, obtaining an accuracy of 75.75%, precision of 73.66%, recall of 

75.75%,F1 Score of 66.87% and an AUC of 83.69%.  
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Table 1. Performance Metrics Comparison 

 

Model Accuracy Precision Recall F1 Score AUC 

CNN-BiLSTM 0.7575 0.7366 0.7575 0.6687 0.8369 

TCN-LSTM 0.7275 0.6329 0.7275 0.6433 0.8360 

CNN-LSTM-Residual 0.6859 0.5751 0.6859 0.5991 0.8321 

CNN 0.6744 0.6261 0.6744 0.6017 0.8323 

Attention 0.6721 0.5114 0.6721 0.5807 0.8337 

LSTM 0.6605 0.5036 0.6605 0.5711 0.8287 

BiLSTM-Attention 0.6282 0.4757 0.6282 0.5402 0.8083 

Transformer 0.5012 0.3838 0.5012 0.4342 0.7404 

 

    Figure 3 illustrates the training and validation accuracy and loss curves for the CNN-BiLSTM model across 80 

epochs. The accuracy graph shows a consistent upward trend in both training and validation accuracy, stabilizing after 

around 40 epochs, indicating that the model generalizes well without significant overfitting. Similarly, the loss graph 

reveals a steady decrease in both training and validation loss, further confirming good learning behavior. The final 

validation accuracy closely follows the training accuracy, highlighting the robustness of the CNN-BiLSTM model's 

learning process. 

 

 
 

Fig.3. CNN-BiLSTM Model Accuracy and Loss Curves 

 

    Figure 4 presents a bar chart comparing different models based on Precision, Accuracy, Precision, F1 Score, Recall 

and AUC. From the visualization, The results demonstrate that the CNN-BiLSTM model consistently achieves superior 

scores across most metrics, further validating its performance. Particularly, CNN-BiLSTM and TCN-LSTM 

demonstrate higher AUC values, showing strong discriminative ability. On the other hand, models like the Transformer 

and BiLSTM-Attention performed comparatively lower across all metrics, emphasizing the advantages of the hybrid 

CNN-BiLSTM structure. 
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Fig.4. Model Performance Comparison 

 

    Figure 5 shows the confusion matrix for the CNN-BiLSTM model. The confusion matrix provides a detailed view of 

the model’s prediction outcomes across different classes. It can be observed that the CNN-BiLSTM model classifies 

classes 1, 2, and 3 (representing different PD stages) with very high accuracy, as shown by the dense diagonal 

elements. However, for class 0, there is noticeable misclassification into neighboring classes, indicating some 

confusion in early-stage detection. Nevertheless, the overall distribution suggests that CNN-BiLSTM is highly 

effective, particularly in identifying moderate to severe PD stages. 

 

 
 

Fig.5. CNN-BiLSTM Confusion Matrix 

  

    Figure 6 displays the Micro-Average ROC Curve comparison among different models. ROC Curves provide insights 

into the trade-off between true positive rate (sensitivity) and false positive rate (1-specificity). Among the models, 

CNN-BiLSTM achieved the highest AUC of 0.8369, indicating the best capability in distinguishing between different 

PD severity levels. CNN-LSTM-Residual and TCN-LSTM also exhibited strong performance, whereas the 

Transformer model demonstrated relatively poorer classification ability with the lowest AUC. 
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Fig.6. Micro-Average ROC Curve Comparison 

 

    The above graphs and table (Table 1, Figure 3, Figure 4, Figure 5 and Figure 6) collectively indicate that our 

proposed CNN-BiLSTM method achieves higher predictive accuracy, lower false detection rates, and better overall 

classification performance compared to existing models. These results emphasize the effectiveness of the hybrid CNN-

BiLSTM architecture and its potential for real-world applications in early Parkinson’s Disease diagnosis and remote 

health monitoring through non-invasive voice signal analysis. 

 

V. CONCLUSION 

 

     This study presents a deep learning-based approach for the multi-class classification of Parkinson’s Disease severity 

using speech signal analysis. By combining CNN and BiLSTM architectures, the model effectively captures both 

spatial and temporal characteristics of vocal patterns associated with PD. By combining the acoustic features such as  

jitter, shimmer, and HNR enhances the model’s ability to differentiate between Healthy, Mild, Moderate, and Severe 

stages of the disease. Additionally, structured preprocessing techniques like Z-score normalization and Pearson 

correlation filtering contribute to feature relevance and dimensionality reduction. The deployment of the trained model 

through a Streamlit-based interface allows real-time, user-friendly interaction for PD stage prediction. Overall, the 

proposed framework demonstrates the potential for scalable, non-invasive, and accessible early-stage Parkinson’s 

diagnosis using voice data.  
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