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ABSTRACT: The minimum spanning tree clustering algorithm is used for detecting clusters with irregular boundaries. 
In this paper, we are considering two clustering algorithm .First we will take a set of points of any given k and produces 
a k-partition of them. It produces k clusters with center and guaranteed intra-cluster similarity. This process is repeated 
until k clusters are produced. In  the second algorithm maximizing the overall standard deviation reduction, in order to 
produce a group of clusters by partitions a point set, without a given k value. In this paper we used both the algorithms 
to find Informative Meta similarity clusters. 
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I. INTRODUCTION 
 

A spanning tree is an acyclic subgraph of a graph G, which contains all the vertices from G. The minimum spanning 
tree (MST) of a weighted graph is the minimum weight spanning tree of that graph. With the classical MST algorithms 
[7,4,5], the cost of constructing a minimum spanning tree is O (mlog n), where m is the number of edges in the graph, n 
is the number of vertices. More efficient algorithms for constructing MSTs have also been extensively researched 
[3,1,2]. These algorithms promise close to linear time complexity under different assumptions. A Euclidean minimum 
spanning tree (EMST) is a spanning tree of a set of n points in a metric space (En), where the length of an edge is the 
Euclidean distance between a pair of points in the point set. 
Clustering is mostly unsupervised process, thus evaluating the result of the clustering algorithms is very important. In 
the clustering process there are no predefined classes therefore it is difficult to find an appropriate metric for measuring 
whether the cluster configuration found during the process, is acceptable or not. Several clustering approaches have 
been developed [6]. Given a connected, undirected graph G=(V,E), where V is the set of nodes, E is the set of edges 
between pairs of nodes, and a weight w (u , v)specifying weight of the edge (u, v) for each edge (u, v) ∈ E. A spanning 
tree is an acyclic subgraph of a graph G, which contain all vertices from G. The Minimum Spanning Tree (MST) of a 
weighted graph is minimum weight spanning tree of that graph. Several well established MST algorithms exist to solve 
minimum spanning tree problem [10], [8], [9]. The cost of constructing a minimum spanning tree is O (m log n), where 
m is the number of edges in the graph and n is the number of vertices. More efficient algorithm for constructing MSTs 
has also been extensively researched. These algorithms promise close to linear time complexity under different 
assumptions. A Euclidean minimum spanning tree (EMST) is a spanning tree of a set of n points in a metric space (En), 
where the length of an edge is the Euclidean distance between a pair of points in the point set. 
The MST clustering algorithm is known to be capable of detecting clusters with irregular boundaries [11]. Unlike 
traditional clustering algorithms, the MST clustering algorithm does not assume a spherical shaped clustering structure 
of the underlying data. The EMST clustering algorithm uses the Euclidean minimum spanning tree of a graph to 
produce the structure of point clusters in the n-dimensional Euclidean space. Clusters are detected to achieve some 
measure of optimality, such as minimum intracluster distance or maximum intercluster distance .The (E) MST 
clustering algorithm has been widely used in practice. An example application of the algorithm is image color 
clustering in web image analysis. Web images are usually supplied with shaded or multicolored complex backgrounds, 
often found in photographs, maps, engineering drawings and commercial advertisements. Analyzing web images is a 
challenging task due to their low spatial resolution and the large number of colors in the images. The purpose of color 
clustering in web image analysis is to reduce thousands of colors to a representative few that clearly differentiate 
objects of interest in an image. In this paper, we propose two EMST based clustering algorithms to address the issues—
undesired clustering structures and an unnecessarily large number of clusters, commonly faced by the SEMST and the 
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ZEMST algorithm respectively. First we will take a set of points of any given k and produces a k-partition of them. It 
produces k clusters with centre and guaranteed intra-cluster similarity. This process is repeated until k clusters are 
produced. In  the second algorithm maximizing the overall standard deviation reduction, in order to produce a group of 
clusters by partitions a point set, without a given k value. In this paper we used both the algorithms to find Informative 
Meta similarity clusters. 
 

II. RELATED WORK 
 

The simplest k-constrained EMST-based algorithm is to remove k - 1 edges from the EMST, resulting in k subtrees. 
Each cluster is the set of points in each subtree. In the remaining paper, we will refer to this algorithm as SEMST. 
Zahn [12] describes a method to remove inconsistent edges—edges, whose weights are significantly larger than the 
average weight of nearby edges—from the EMST. His definition of inconsistent edges relies on the concept of depth-d 
neighborhoods, N1 and N2, for each incident point, v1 and v2, of an edge e. The neighborhood of v1 is the set of edges 
on paths from v1 having length no greater than d, and excluding the edge e. Let 푤N1 be the average weight, and N1 be 
the standard deviation, of neighborhood N1, with similar definitions for N2. He provides several alternative 
inconsistency criteria: 
 
(1) w > wN1 + c x σN1  or  w > wN2 + c × σN2 
(2) w > max(wN1 + c x σN1;wN2 + c x σ N2) 
(3) w/max(c x	wN1;c x	w N2) > f 
 
The values d, c and f are user-assigned tuning parameters. Each cluster contains the points within each subtree resulting 
from the removal of inconsistent edges from the EMST. We will denote this algorithm as ZEMST. Bansal, Blum and 
Chawla [13] introduced an unconstrained algorithm called correlation clustering. The clustering problem they consider 
is a complete graph in which each edge is labelled qualitatively as “+” (similar) or “-” (dissimilar). The objective is to 
find the clustering that minimizes the number of disagreements with the edge labels. They proved NP-hardness of the 
fundamental problem, but provided approximation algorithms which have been further improved by others [15, 14]. 
Clustering algorithm proposed by S.C.Johnson [19] uses proximity matrix as input data. The algorithm is an 
agglomerative scheme that erases rows and columns in the proximity matrix as old clusters are merged into new ones. 
The algorithm is simplified by assuming no ties in the proximity matrix. Graph based algorithm was proposed by 
Hubert [17] using single link and complete link methods. He used threshold graph for formation of hierarchical 
clustering. An algorithm for single-link hierarchical clustering begins with the minimum spanning tree (MST) for G 
(∞), which is a proximity graph containing n(n-1)/2 edge was proposed by Gower and Ross [18]. Later Hansen and 
DeLattre [16] proposed another hierarchical algorithm from graph coloring.  
Eldershaw and Hegland [20] re-examine the limitations of many clustering algorithms that assume the underlying 
clusters of a data set are spherical. They provide a broader definition of a cluster based on the rule of transitivity: if two 
points p1 and p2 are close to the same point p0, p1 and p2 are themembers of the same cluster in which they are indirectly 
related through p0, despite the fact that p1 and p2 are not constrained by distance measure. They present a clustering 
algorithm by constructing a graph using Delaunay triangulation, and removing the edges between neighbors that are 
longer than a cut-off point. Next, they apply a graph partitioning algorithmto find the isolated connected components in 
the graph, and each discovered component is treated as a cluster.  
Similar to Zahn’sMST clustering algorithm, this algorithm divides a point set into a certain number of clusters at once 
by removing all edges in the graph that are longer than a threshold. Unlike in Zahn’s method, they choose a cut-off 
point which corresponds to the “global” minimum of a function that measures how well the consistent edges and the 
inconsistent edges in the graph are separated. Lopresti and Zhou [21] suggest an RGB color clustering method by 
constructing a Euclidean minimum spanning tree. Each distinct color in a given image is considered as a point in the 
three dimensional RGB color space. Thus each color is a node in the EMST. The weight of an edge is the Euclidean 
distance between two color nodes in the tree. They compute the average distance of the edges in the EMST once it is 
built. Subsequently the edges that are “longer” than the average weight by a predetermined amount are removed from 
the tree, leaving a set of disjoint subtrees. Colors in each subtree are the members of a color cluster. They point out that 
the EMST based color clustering algorithm may fail when dealing with textures and when there are a large number of 
colors in an image. 
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III. PROPOSED CLUSTERING ALGORITHM 
 
By using MST representation we can convert a multi-dimensional clustering problem to a tree partitioning problem, 
i.e., finding particular set of tree edges and then cutting them. A tree is a simple structure for representing binary 
relationship, and any connected components of tree is called subtree. Representing a set of multi-dimensional data 
points as simple tree structure will clearly lose some of the inter data relationship. Clustering problem is equivalent to a 
problem of identifying these subtrees through solving a tree partitioning problem. The inherent cluster structure of a 
point set in a metric space is closely related to how objects or concepts are embedded in the point set. The approximate 
number of embedded objects can sometimes be acquired with the help of domain experts. Other times this information 
is hidden and unavailable to the clustering algorithm. In this section we preset clustering algorithm which produce k 
clusters, with center, radius, diameter and variance of each cluster. We also present another algorithm to find the 
hierarchy of k clusters and central cluster. 
 

A. Measuring the Cluster Tightness and Compactness 
The cluster tightness measure is a within – cluster estimate of clustering effectiveness , however it is possible to devise 
inter- cluster measure also, to better measure the separation between the various clusters.The Cluster compactness 
measure is based on the variance of the data points distributed in the subtrees (clusters). The variance of cluster T is 
computed as: 

 
Where d(xi, xj) is distance metric between two points(objects) xi and xj, where n is the number of objects in the subtree 
Ti., and x0 is the mean of the subtree T. A smaller the variance value indicates, a higher homogeneity of the objects in 
the data set, in terms of the distance measure d ( ). Since d ( ) is the Euclidean distance, v (Ti) becomes the statistical 
variance of data set σ (Ti). The cluster compactness for the output clusters generated by the algorithm is the defined as: 

 
Where k is the number of clusters generated on the given data set S, v (Ti) is the variance of the clusters Ti and V(S) is 
the variance of data set S.  
 
 

IV. CLUSTERING ALGORITHM: RDEMST 
 

This algorithm finds the radius, diameter and variance of subtrees, by using these we can easily find out the tightness 
and compactness of clusters. Hence we named the new algorithm as Radius and Diameter based Euclidean Minimum 
Spanning Tree algorithm (RDEMST). 
Algorithm is defined as follow: 

 
Algorithm: RDEMST (k) 
Parameters are: 

 
Input: point set is S  
Output: number of clusters are k with C (represents set of center points) 
e :edge in the EMST constructed from S 
We :be the weight of e 
σ :be the standard deviation of the edge weights 
ST :be the set of disjoint subtrees of the 
EMST 
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nc : be the number of clusters 
Steps are: 
1. First construct an EMST from S 
2. Calculate the average weight of Ŵ of all the edges 
3. Calculate the standard deviation σ of the edges 
4. Calculate the variance of the point set S 
5. ST = ø; nc = 1; C= ø;  
6. Repeat  
7. for each e ∈ EMST 
8. If (We > Ŵ + σ) or (current longest edge e)  
9. Remove e from EMST 
10. the new disjoint subtree is  ST = ST U {T’} // T’’  
11. nc = nc+1  
12. Using eccentricity of points calculate the center Ci of Ti  
13. Using eccentricity of points calculate the diameter of Ti  
14. Calculate the variance of Ti  
15. C = UTi ST {Ci} 
16 Until nc = k 
17. Return k clusters with C 
 
The variance for each subtree (cluster) is computed to find the compactness of clusters. A smaller the variance value 
indicates, a higher homogeneity of the objects in the data set. The cluster compactness measure evaluates how well the 
subtrees (clusters) of the input is redistributed in the clustering process, compared with the whole input set, in terms of 
data homogeneity reflected by Euclidean distance metric used by the clustering process. Smaller the cluster 
compactness value indicates a higher average compactness in the output clusters. Figure 1 illustrate a typical example 
of cases in which simply remove the k-1 longest edges does not necessarily output the desired cluster structure. Our 
algorithm finds the center, radius, diameter and variance of the each cluster which will be useful in many applications.  
 

 
Figure1. Clusters connected through a point 

 
V. CONCLUSION 

 
This algorithm finds the radius, diameter and variance of clusters using eccentricity of points in a cluster. The radius 
and diameter value gives the information about tightness of clusters. The variance value of the cluster is useful in 
finding the compactness of cluster. This information will be very useful in many applications. Our RDEMST algorithm 
automatically determines the desired number of clusters. Our RDEMST clustering algorithm assumes a given cluster 
number. The algorithm gradually finds k clusters with center for each cluster. These k clusters ensures guaranteed intra-
cluster similarity. The algorithm finds radius, diameter and variance of clusters using eccentricity of points in a cluster. 
The radius and diameter value gives the information about tightness of clusters and defined to maximize the overall 
standard deviation reduction. In the future, we want to explore and test our proposed clustering algorithms in various 
domains. 
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