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ABSTRACT: SLAM functions as a vital capability for autonomous robots which allows them to perform navigation 

and build maps of unexplored environments. This paper develops a multi-sensor SLAM framework which operates on 

the NAO humanoid robot within Webots simulation platform. The framework uses information from virtual sonar 

sensors alongside IMU (Inertial Measurement Unit) devices as well as cameras for improved perception of 

surroundings and better positioning accuracy. A robust approach based on Extended Kalman Filter (EKF) for state 

estimation control enables hazard detection using visual features which enhances mapping reliability. The proposed 

framework established in dynamic conditions shows positive experimental outcomes that enhance localization 

precision and mapping reliability. Empirical evidence demonstrates how the system operates effectively through 

simulations which provides proof for implementing this technology within humanoid robotic systems. 

 

KEYWORDS: SLAM; Humanoid Robots; Multi-Sensor Fusion; Hazard Detection; Webots Simulation. 

 

I. INTRODUCTION 

 

The autonomous navigation of humanoid robots through unknown environments requires reliable Simultaneous 

Localization and Mapping (SLAM) solutions because they are essential for navigation. SLAM allows robots to 

generate environment maps plus position relations which forms a fundamental requirement for search and rescue 

operations and domestic assistance tasks and industrial automation systems. The NAO humanoid robot experiences 

specific obstacles because of its sophisticated movement system and restricted sensor system and dynamic locomotion 

methods that create variations and unpredictability in sensing data. The implementation difficulty for traditional SLAM 

approaches increases because of two major factors: the requirement for real-time processing on restricted hardware 

systems. The state-of-the-art visual-inertial SLAM system ORB-SLAM3 function optimally in structured environments 

however it needs powerful computational resources that NAO robots equipped with limited processing power and low-

resolution sensors cannot support. 

 

The proposed research develops a multi-sensor SLAM framework for NAO robots that uses virtual sonar data with 

IMU measurements and camera inputs to advance robot environmental sensing and position determination. The state 

estimation utilizes an Extended Kalman Filter (EKF) that merges IMU readings for orientation and velocity 

measurements with sonar sensor data for obstacle detection and camera-extracted visual features. Through EKF 

predictions based on motion models the robot's state gets updated using observed features while maintaining reliable 

localization performance in dynamic unstructured environments. The framework adds a navigation safety system which 

analyzes environmental hazards through color thresholding and contour detection to spot fires and bottles and plates. 

The system enables the robot to find and evade objects during live operation. The system presents a real-time 

visualization component which displays the robot trajectory together with detected features and hazards on a two-

dimensional map for monitoring the complete environment. The framework achieves better localization precision as 

well as mapping dependability through sensor data fusion from various detection instruments [2]. 
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The contributions of this work include a multi-sensor fusion approach for improved localization accuracy, a hazard 

detection module for identifying obstacles and environmental hazards, and a real-time visualization system for 

monitoring robot performance. These advancements address the unique challenges of humanoid robots, making the 

proposed framework well-suited for resource-constrained systems.  

 

II. RELATED WORK 

 

The authors of [3] developed an SLAM algorithm with particle filtering for humanoid robots operating in unknown 

environments for multi-robot collaboration. Their system uses distributed computing techniques to make their approach 

scalable yet encounters performance issues when operating on individual robots in real time. Ye et al. [4] implemented 

neural bipartite graph matching to improve efficiency during multi-robot active mapping operations. These approaches 

typically need high computational power to operate while they fail to adapt to humanoid robot specifications including 

balance maintenance and sensor weight capacity. 

 

Chen et al. [5] created a mobile robot active SLAM framework which unites area coverage and obstacle avoidance 

mechanisms in sensor fusion operations. Their system links EKF-based state estimation to frontier exploration 

strategies to create effective mapping capabilities without safety hazards. The method proves useful for wheeled robots 

yet it fails to solve difficulties faced by humanoids during locomotion like stability maintenance and restricted sensory 

perception. The research of Ahmad et al. [6] presents a method which solves EKF-based mobile robot navigation 

problems of partial observability by boosting the accuracy of robotic localization in feature-poor settings. This paper 

emphasizes the significance of reliable state estimation in SLAM yet fails to incorporate simultaneous use of diverse 

sensors. 

 

The proposed framework extends previous advancements by developing solutions for humanoid robot-specific issues. 

The framework merges information from virtual sonar and IMU sensors and cameras to boost environmental perception 

as well as localization precision. The framework applies EKF-based state estimation together with visual feature 

detection and hazard identification to produce both reliable performance and computational efficiency in dynamic 

settings. Such approach works best in systems with limited resources because it optimizes computational resource 

management. 

 

III. METHODOLOGY 

 

The research developed Webots simulation software to evaluate a multi-sensor SLAM framework that operated through 

two NAO robots within an environment designed like a home. The setup arranges two linked spaces which stand for 

different sections of an ordinary domestic area. The setup consists of rooms with different objects and hazards 

including furniture and appliances while wooden plates rest improperly on the floor and fire hazards remain present. 

The simulated home environment contains object arrangements throughout the space to expose robots to real-world 

placement challenges as they track the area and validate proper placements among hazard detection tasks. 

 

Both NAO robots function separately in this application area. Each robot occupies its own designated space with one 

robot stationed in a first room and the other in the second room. The robots have separate areas to monitor for both 

improperly placed objects and hazards including bottles on the floor combined with misaligned furniture. The robots 

detect and move through the space using their virtual sonar sensors with IMU (Inertial Measurement Unit) and camera 

information for sensory perception. The sonar sensors help robots measure distances to detect objects and the IMU 

system tracks their position while the cameras enable visual hazard identification. 

 

The robotic system operates as a team because each unit communicates important data regarding dangerous spots and 

mislocated items. While patrolling the space the robots perform continuous environmental scan with Laplacian edge 

detection to construct precise spatial mapping. The edge detection process enables robots to detect obstacles as 

furniture while distinguishing them from open areas through proper identification of mispositioned objects. 

Upon detecting a mispositioned object or a hazard, the robots flag it in their system. The camera feed processes the data 

and provides textual feedback in the console, notifying the system of any issues detected. For example, if the robot 
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identifies a bottle resting on the floor it will produced an alert message "Bottle detected on the floor - hazard!" The 

robot system identifies possible hazards through texture analysis before providing additional information about the 

detected objects as in "A red item was discovered but it is not classified as fire (based on texture analysis)." 

 

The robots efficiently survey the whole home together by teaming up to find hazards and proper placement of objects. 

The multi-sensor SLAM framework provides robots with precise positioning abilities in space which results in 

organized areas while maintaining safety. 

Two NAO robots are positioned to monitor separate home areas as they detect hazards while maintaining correct object 

positioning. 

 

           
 Fig. 1. Set up of the webot Home nvironment                 Fig. 2. Robots malnuvering checking the house                                                  

 

Figures 1 and 2: Webots environment showing the two NAO robots monitoring different areas of the home setting. 

 

Problem Statement 

 

SLAM serves as a decisive technology in autonomous robotics which enables machines to simultaneously perform 

navigation and mapping of uncharted environments. The traditional SLAM approaches encounter obstacles when used 

with NAO robots because of their advanced kinematics and restricted sensor capacities as well as demanding real-time 

processing requirements. Household settings consist of shifting objects alongside safety risks which need highly 

accurate and flexible systems. The current SLAM frameworks display poor performance when dealing with these 

issues particularly when humanoid robots execute tasks within constrained resource settings such as indoor hazard 

detection and object placement management and autonomous navigation. An efficient multi-sensor SLAM system with 

dynamic real-world capabilities is needed to provide safe and accurate environmental understanding in such 

environments. 

 

Proposed Method 

 

The proposed research designs a multi-sensor SLAM framework for NAO humanoid robots which combines virtual 

sonar and IMU (Inertial Measurement Unit) sensors and camera systems to improve localization and mapping 

precision. An Extended Kalman Filter (EKF) operates within the framework to estimate the robot's state by combining 

sensory information which enhances hazard detection and position tracking throughout dynamic household 

environments. 

 

With Laplacian edge detection as part of this system the robot can sense obstacle boundaries and improperly placed 

objects. The system construct precise navigation maps and detects potential hazards through this feature. Safety 

detection within the system includes visual texture analysis for the identification of hazardous objects including bottles 

and fire hazards. The robots collaborate to examine every part of the environment which enables them to identify 

hazards and track placed objects effectively. 
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Real-time location tracking together with environment surveillance occurs in dynamic spaces through this system that 

primarily focuses on safety measures while detecting lost objects for better home organization. The designed system 

operates efficiently within constrained resource environments specifically for humanoid robots such as NAO. 

The Block Diagram visualizes data movement including the camera and IMU and sonar inputs that process through 

EKF and feature mapping and hazard detection. The system updates three main areas including state variables and the 

map as well as motion parameters while the SLAM plot shows their visualization. 

 

 
 

Figure3: Flow chat of the proposed method 

 

 

Working of Camera Data 

 

The NAO robot uses its camera to capture environmental RGB images that serve both for feature detection and hazard 

identification procedures. First the images undergo grayscale conversion before the feature detection algorithm (e.g., 

FAST) selects keypoints for identification. The robot’s pose determines a conversion from the robot-centric coordinate 

system to world coordinates for keypoint descriptors that get added to the map as features. The detection process uses 

HSV color space conversion to apply color masks which identify hazards (including fire, plates and bottles). The 

system extracts constraints from masked areas to analyze their shapes before hazard classification. World coordinates 

are calculated for identified hazards which get incorporated into the hazard map. 

 

                  
                                                                                                                                                       Figure 4 Robot Agent A                                                Figure 5 Robot Agent B                                                   
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The Laplacian edge detection shows the algorithm successfully detects environmental object edges thus improving map 

accuracy. Environmental boundaries together with obstacles and features become distinguishable through the essential 

edges. The hazard bottle detection results together with other environmental features help the robot refine its location 

and prevent obstacles which ultimately improves its navigation efficiency throughout the hazard map. 

 

 

                                    
 

           Fig. 6 Robot Agent A                                                             Fig. 7. Robot Agent B                       
                                                                               

 

Table 1 shows an all-encompassing data log which presents SLAM framework metrics including position data and both 

IMU and sonar measurements. The framework demonstrated successful identification of new features at multiple 

coordinates that are essential for maintaining accurate position information and map updates. Data consistency from 

sonar sensors and IMU devices demonstrates sensor reliability and periodic changes in visualization and feature 

detection show how the system adapts to environmental changes. Real-time navigation and mapping tasks demonstrate 

high robustness through these collected data points 

 

 
 

Table 1: Data log from the SLAM framework showing position, IMU data, sonar readings 
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 PSEUDO CODES 

 

The pseudo-codes describe the Multi-Sensor SLAM Framework for the NAO robot. They cover Feature Mapping, 

Hazard Detection, and Motion Control, integrating data from the camera, IMU, and sonar. An EKF estimates the 

robot’s state, and a SLAM plot visualizes results.              

hazard and other features, allow the robot to localize itself more accurately and avoid obstacles, enhancing overall 

navigation performance. 

                               

1: Feature Mapping 

Processes camera images to detect features. Converts images to grayscale, detects keypoints, and maps them in world 

coordinates. 

 

Feature Mapping Algorithm  

Algorithm 1 Feature Mapping for NAO Robot 

Require: Camera Image: I (RGB image). 

       Robot Pose xk = [xk,- yk, θk]T (position and orientation). 

Ensure: Updated Map Features: F = {(xi, yi)}m 

i=1 (feature positions). 

Convert I to grayscale: Igray = Grayscale(I). 

Detect keypoints: K = FAST (Igray ). 

for each ki ∈ K do 

 Extract descriptor: di = Descriptor(ki). 

Calculate relative position: ∆xi, ∆yi. 
Transform to world coordinates: 

            xi = xk + ∆xi cos(θk) − ∆yi sin(θk) 
            yi = yk + ∆xi sin(θk) + ∆yi cos(θk) 
Add to map: F = F ∪ {(xi, yi)}. 

end for 

 

 

2: Hazard Detection 

Identifies hazards (e.g., fire, bottles) using color thresholding and contour analysis. Maps hazards in world coordinates. 

 

Hazard Detection Algorithm   

Algorithm 2 Hazard Detection for NAO Robot 

Require: Camera Image: I (RGB image). 

   Robot Pose: xk = [xk,-yk, θk]T (position and orientation). 

Ensure: Detected Hazards: H = {(xj , yj , typej )}p 

j=1 (hazard positions andtypes). 

1: Convert I to HSV: IHSV = HSV (I). 

2: For fire detection: 

3: Apply red mask: Mf ire = Color M ask(IHSV , red). 

4: Analyze texture: F ire = Texture Analysis (Mf ire). 

5: For floor hazards: 

6: Apply masks: Mplate = ColorMask(IHSV , white), Mbottle = 

ColorM ask(IHSV , blue). 

7: Find contours: Cplate = F ind Contours (e.g M plate), C bottle = 

  Find Contours(Mbottle). 

8: Analyze shape: P late = Shape Analysis (C plate), Bottle = 

ShapeAnalysis(Cbottle). 

9: for each hazard do 
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10.     Calculate position: ∆xj , ∆yj . 
11     Transform to world coordinates: 

                               xj = xk + ∆xj cos(θk) − ∆yj sin(θk) 
                               yj = yk + ∆xj sin(θk) + ∆yj cos(θk) 
 12    Add to hazard map: H = H ∪ {(xj , yj , type j )}. 

 13.end for 

 

3: Motion Control 

 

Controls motion using sonar and IMU data. Avoids obstacles, stops, turns, or continues forward. Scans periodically. 

 

 Motion Control Algorithm 

Algorithm 3 Motion Control for NAO Robot 

Require: Sonar Readings: sk = [s1, s2, . . . , sn] (distance measurements). 

     Current Motion State: motion state. 

Ensure: Motion Command: ak (next action, e.g., ”Forwards”, ”TurnLeft”). 

   1: Check sonar: Obstacle = CheckObstacles(sk). 

   2: if obstacle detected then 

   3:   Stop: ak = Stop(). 

   4:   Turn: ak = T urn(direction). 

   5:   Set flag: turn af ter obstacle = T rue. 

   6: else if turn af ter obstacle is True then 

   7:   Resume: ak = F orwards(). 

   8:   Clear flag: turn af ter obstacle = F alse. 

   9: else if step count exceeds threshold then 

  10:   Pause: ak = Stop(). 

  11:   Scan: ScanEnvironment(). 

  12:   Reset step count: step count = 0. 

  13: else 

  14:    Continue: ak = F orwards(). 

  15:    Increment step count: step count = step count + 1. 

  16: end if 

IV. SIMULATION RESULTS 

 

Testing of the proposed multi-sensor SLAM framework used two NAO robots operating in Webots simulation 

conditions. The robots used sonar technology combined with IMU and cameras to perform home environment 

exploration and hazard detection tasks. The robotic systems attained 99.19% localization precision while traveling 

68.39 meters in Environment A along with 27.85 meters in Environment B. The robots show effective performance in 

their ability to explore and create maps of the environment. 

 

           

                                                                                                                                Fig. 8. Robot  Agent A Metrices                                            Fig. 9. Robot  Agent B Metrices                          
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The robots moved during each round for 0.67 seconds before completing the task indicating high-speed performance. 

Laplacian edge detection successfully highlighted object edges through its method while the hazard detection system 

confirmed safety hazards. Robots identified hazardous from non-hazardous objects through their capability to analyze 

textures. The framework proves effective in dynamic settings through these results which demonstrate its real-time 

abilities for hazard detection and mapping and automated navigation capabilities. 

 

 
 

Fig.10 Console Readings 

 

The console readings indicate the robot’s current position at coordinates (6.85, 0.00) with a heading of 0.00°. A bottle 

hazard is detected and mapped at coordinates (7.35, 0.00), and a warning is issued that the bottle is on the floor. 

Additionally, a red object is detected, but the texture analysis confirms it is not fire. 

 

  
                                                                                                                                             Fig. 11. Slam Plot For Agent A                                                                  Fig. 12. Slam plot For  Agent B                         

 

Finally the SLAM results are plotted showing the NAO robots navigation in the environment. The blue path represents 

the robot's trajectory, with red crosses marking the detected features. The green triangle indicates the robot's current 

position. The robot successfully detects features in the environment while maintaining accurate localization and 

mapping, demonstrating the effectiveness of the multi-sensor fusion approach for real-time navigation and map 

building. 

V. CONCLUSION AND FUTURE WORK 

 

The research presents a multi-sensor SLAM framework for NAO humanoid robots which merges sonar and IMU and 

camera measurements to boost navigation and mapping during dynamic operations. The approach presents an efficient 

Laplacian edge detection technique which improves object detection accuracy in maps while developing real-time 

safety systems to detect hazards like fire hazards and misplaced objects. The system framework supports collaborative 

operations between multiple robots that allow robots to perform environmental monitoring tasks jointly. 

The upcoming work will concentrate on developing semantic mapping capabilities which enhance object recognition 

while developing multi-robot coordination protocols to strengthen team operations in challenging environments. The 
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testing of this framework will occur on physical NAO robots to prove its operational capabilities in genuine physical 

spaces. 
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