

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501194 1268

A Survey on Mapping Bug Reports to
Relevant Files: A Ranking Model, A Fine

Grained Benchmark, A Feature Evaluation

Anuja Hemant Shinde, Prof. Nilesh Sable
M.E. Student, Department of Computer Engineering, JSPM’s Imperial College of Engineering and Research,

Wagholi, Pune, Maharashtra, India

Assistant Professor, Dept. of Computer Engineering., JSPM’s Imperial College of Engineering and Research,

Wagholi, Pune, Maharashtra, India

ABSTRACT: Once a novel bug report is received, developers generally have to be compelled to be compelled to breed
the bug and perform code reviews to hunt out the cause, a way that will be tedious and time overwhelming. A tool for
ranking all the provision files with relation to but in all probability they are to contain the rationale for the bug would
modify developers to slender down their search and improve productivity. This paper introduces associate degree
adaptive ranking approach that leverages project data through purposeful decomposition of computer code computer
file, API descriptions of library parts, the bug-fixing history, the code modification history, and so the file dependency
graph. Given a bug report, the ranking score of each offer file is computed as a weighted combination of associate
degree array of choices, where the weights unit of measurement trained automatically on antecedently solved bug
reports using a learning-to-rank technique. we've an inclination to worth the ranking system on six huge scale open
offer Java comes, exploitation the before-fix version of the project for every bug report. The experimental results show
that the learning-to-rank approach outperforms three recent progressive ways. specially, our technique makes correct
recommendations at intervals the best ten stratified offer files for over seventy p.c of the bug reports at intervals the
Eclipse Platform and Felis domesticus comes.

KEYWORDS: Bug reports, software maintenance, learning to rank

I. INTRODUCTION

Word illustration makes an attempt to represent aspects of word meanings. as an example, the illustration of
“cellphone” might capture the facts that cellphones are electronic product, that they embrace battery and screen, that
they will be accustomed chat with others, and so on. Word illustration may be a important part of the many tongue
process systems as word is typically the fundamental process unit of texts. A uncomplicated approach is to represent
every word as aone-hot vector, whose length is vocabulary size and only {1} dimension is 1, with all others being zero.
However, one hot word illustration solely encodes the indices of words in an exceedingly vocabulary, however fails to
capture made relative structure of the lexicon. to unravel this drawback, several studies represent every word as a
continual, low-dimensional and real valued vector, conjointly referred to as word embeddings. Existing embedding
learning approaches ar totally on the premise of spatial arrangement hypothesis [9], that states that the representations
of words ar mirrored by their contexts. As a result, words with similar grammatical usages and linguistics meanings,
like “hotel” and “motel”, ar mapped into neighboring vectors within the embedding area. Since word embeddings
capture linguistics similarities between words, they need been leveraged as inputs or additional word options for a
range of tongue process tasks, as well as MT , grammar parsing , question respondent, discourse parsing , etc al.
Despite the success of the context-based word embeddings in several natural language processing tasks [14], we have a
tendency to argue that they're not effective enough if directly applied to sentiment analysis that is that the analysis

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501194 1269

space targeting at extracting, analyzing and organizing the sentiment/opinion (e.g. thumbs up or thumbs down) of texts.
the foremost major problem of context-based embedding learning algorithms is that they solely model the contexts of
words however ignore the sentiment data of text. As a result, words with opposite polarity, like smart and unhealthy, ar
mapped into shut vectors within the embedding area. this can be important for a few tasks like pos-tagging [18] as a
result of the 2 words have similar usages and grammatical roles. However, it becomes a disaster for sentiment analysis
as they need opposite sentiment polarity labels.

II. RELATED WORK

1. Title: Feature identification: A novel approach and a case study
Author: G. Antoniol and Y.-G. Gueheneuc,
Feature identification may be a well-known technique to spot subsets of a program ASCII text file activated once
workout a practicality. many approaches are projected to spot options. we have a tendency to gift associate degree
approach to feature identification and comparison for giant object-oriented multi-threaded programs victimisation each
static and dynamic knowledge. we have a tendency to use processor emulation, information filtering, and probabilistic
ranking to beat the difficulties of collection dynamic knowledge, i.e., impreciseness and noise. we have a tendency to
use model transformations to match and to visualise known options. we have a tendency to compare our approach with
a naive approach and a thought analysis-based approach employing a case study on a real-life giant object-oriented
multi-threaded program, Mozilla, to indicate the benefits of our approach. we have a tendency to conjointly use the
case study to match processor emulation with applied mathematics identification.

2. Title: Feature identification: An epidemiological metaphor,
Author: G. Antoniol and Y.-G. Gueheneuc,
Feature identification may be a technique to spot the ASCII text file constructs activated once workout one among the
options of a program. we have a tendency to propose new applied mathematics analyses of static and dynamic
information to accurately establish options in giant multithreaded object-oriented programs. we have a tendency to
draw inspiration from medical specialty to enhance previous approaches to feature identification ANd develop an
medical specialty figure of speech. we have a tendency to build our figure of speech on our previous approach to
feature identification, during which we have a tendency to use processor emulation, knowledge-based filtering,
probabilistic ranking, and metamodeling. we stock out 3 case studies to assess the quality of our figure of speech,
victimisation the "save a bookmark" feature of net browsers as AN illustration. within the 1st case study, we have a
tendency to compare our approach with 3 previous approaches (a naive approach, a plan analysis-based approach, and
our previous probabilistic approach) in characteristic the feature in MOZILLA, a large, real-life, multithreaded object-
oriented program. within the second case study, we have a tendency to compare the implementation of the feature
within the FIREFOX and MOZILLA net browsers. within the third case study, we have a tendency to establish
identical feature in 2 additional net browsers, Chimera (in C) and ICEBrowser (in Java), and another feature in
JHOTDRAW and XFIG, to focus on the generalizability of our figure of speech

3. Title: Debugadvisor: A recommender system for debugging,
Author: B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa, and V. Vangala,
In giant software package development comes, once a computer user is assigned a bug to repair, she usually spends
lots of your time looking (in associate ad-hoc manner) for instances from the past wherever similar bugs are debugged,
analyzed and resolved. Systematic search tools that enable the computer user to specific the context of the present bug,
and search through various information repositories related to giant comes will greatly improve the productivity of
debugging This paper presents the planning, implementation and knowledge from such a quest tool known as
DebugAdvisor.

4. Expectations, outcomes, and challenges of modern code review
Author: A. Bacchelli and C. Bird,
Code review could be a common software system engineering apply used each in open supply and industrial contexts.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501194 1270

Review these days is a smaller amount formal and additional “lightweight” than the code inspections performed and
studied within the 70s and 80s. we have a tendency to through empirical observation explore the motivations,
challenges, and outcomes of tool-based code reviews. we have a tendency to determined, interviewed, and surveyed
developers and managers and manually classified many review comments across numerous groups at Microsoft. Our
study reveals that whereas finding defects remains the most motivation for review, reviews ar less regarding defects
than expected and instead give extra edges like information transfer, inflated team awareness, and creation of other
solutions to issues.

5. Title: Leveraging usage similarity for effective retrieval of examples in code repositories,

Author: S. K. Bajracharya, J. Ossher, and C. V. Lopes,
Developers usually learn to use arthropod genus (Application Programming Interfaces) by observing existing samples
of API usage. Code repositories contain several instances of such usage of arthropod genus. However, typical info
retrieval techniques fail to perform well in retrieving API usage examples from code repositories. This paper presents
Structural linguistics compartmentalisation (SSI), a way to associate words to ASCII text file entities supported
similarities of API usage. The heuristic behind this method is that entities (classes, methods, etc.) that show similar uses
of arthropod genus ar semantically connected as a result of they are doing similar things. we have a tendency to
appraise the effectiveness of SSI in code retrieval by scrutiny 3 SSI primarily based retrieval schemes with 2 typical
baseline schemes. we have a tendency to appraise the performance of the retrieval schemes by running a group of
twenty candidate queries against a repository containing 222,397 ASCII text file entities from 346 jars happiness to the
Eclipse framework. The results of the analysis show that SSI is effective in up the retrieval of examples in code
repositories.

III. PROPOSED ALGORITHM
A. Architecture:

Figure: System Architecture

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501194 1271

This paper introduces associate adaptive ranking approach that leverages project data through practical decomposition
of ASCII text file, API descriptions of library parts, the bug-fixing history, the code modification history, and also the
file dependency graph. Given a bug report, the ranking score of every supply file is computed as a weighted
combination of associate array of options, wherever the weights area unit trained mechanically on antecedently
resolved bug reports employing a learning-to-rank technique. We assess the bug fixing technique applying feature
choice and instance choice methodology. It provides associate applicable assignment of bug report back to nominative
developer. It reduces associate abnormal behavior of software package engineering.

ADVANTAGES:

1. we tend to introduced a learning-to-rank approach that emulates the bug finding method utilized by
developers.

2. Assign correct errors or bug to applicable user.

3. It scale back longer for assignment associated finding errors in an applicable Program.

4. The ranking performance will take pleasure in informative bug reports and well documented code resulting in
a much better lexical similarity and from ASCII text file files that have already got a bug-fixing history.

5. It apply the feature choice and instance choice technique to method on bug report.

IV. CONCLUSION

To find a bug, developers use not solely the content of the bug report however additionally domain data relevant to

the package project. we have a tendency to introduced a learning-to-rank approach that emulates the bug finding
method used by developers. The ranking model characterizes helpful relationships between a bug report and ASCII text
file files by investing domain data, like API specifications, the syntactical structure of code, or issue chase knowledge.
Experimental evaluations on six Java comes show that our approach will find the relevant files at intervals the highest
ten recommendations for over seventy % of the bug reports in Eclipse Platform and Felis catus. what is more, the
projected ranking model outperforms 3 recent progressive approaches. Feature analysis experiments using greedy
backward feature elimination demonstrate that every one options ar helpful. once plus runtime analysis, the feature
analysis results is used to pick out a set of options so as to attain a target trade-off between system accuracy and
runtime complexness. The projected adaptational ranking approach is mostly applicable to package comes that there
exists a sufficient quantity of project specific data, like a comprehensive API documentation (Section three.1.2)
associated an initial range of antecedently mounted bug reports (Section half-dozen.1). what is more, the ranking
performance will get pleasure from informative bug reports and well documented code resulting in a higher lexical
similarity (Section three.1.1), and from ASCII text file files that have already got a bug-fixing history (Section three.2).
In future work, we are going to leverage further sorts of domain data, like the stack traces submitted with bug reports
and also the file amendment history, likewise as options antecedently utilized in defect prediction systems. we have a
tendency to additionally arrange to use the ranking SVM with nonlinear kernels and more assess the approach on
comes in alternative programming languages.

REFERENCES

[1] G. Antoniol and Y.-G. Gueheneuc, “Feature identification: A novel approach and a case study,” in Proc. 21st IEEE Int. Conf. Softw.
Maintenance,Washington, DC, USA, 2005, pp. 357–366.
[2] G. Antoniol and Y.-G. Gueheneuc, “Feature identification: An epidemiological metaphor,” IEEE Trans. Softw. Eng., vol. 32, no. 9, pp. 627–641,
Sep. 2006.
[3] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa, and V. Vangala, “Debugadvisor: A recommender system for debugging,” in Proc. 7th
Joint Meeting Eur. Softw. Eng. Conf. ACM SIGSOFT Symp. Found. Softw. Eng., New York, NY, USA, 2009, pp. 373–382.
[4] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern code review,” in Proc. Int. Conf. Softw. Eng., Piscataway, NJ,
USA, 2013, pp. 712–721.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501194 1272

[5] S. K. Bajracharya, J. Ossher, and C. V. Lopes, “Leveraging usage similarity for effective retrieval of examples in code repositories,” in Proc. 18th
ACM SIGSOFT Int. Symp. Found. Softw. Eng., New York, NY, USA, 2010 pp. 157–166.
[6] R. M. Bell, T. J. Ostrand, and E. J. Weyuker, “Looking for bugs in all the right places,” in Proc. Int. Symp. Softw. Testing Anal., New York, NY,
USA, 2006, pp. 61–72.
[7] N. Bettenburg, S. Just, A. Schr€oter, C. Weiss, R. Premraj, and T. Zimmermann, “What makes a good bug report?” in Proc. 16th ACM SIGSOFT
Int. Symp. Found. Softw. Eng., New York, NY, USA, 2008, pp. 308–318.
[8] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The concept assignment problem in program understanding,” in Proc. 15th Int. Conf. Softw.
Eng., Los Alamitos, CA, USA, 1993, pp. 482–498.
[9] D. Binkley and D. Lawrie, “Learning to rank improves IR in SE,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol., Washington, DC, USA,
2014, pp. 441 445.
[10] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,” J. Mach. Learn. Res., vol. 3, pp. 993–1022 Mar. 2003.
[11] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information needs in bug reports: Improving cooperation between developers and users,” in
Proc. ACM Conf. Comput. Supported Cooperative Work, New York, NY, USA, 2010, pp.301–310.
[12] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering Using UML, Patterns, and Java, 3rd ed. Upper Saddle River, NJ, USA,
Prentice-Hall, 2009.
[13] Y. Brun and M. D. Ernst, “Finding latent code errors via machine learning over program executions,” in Proc. 26th Int. Conf. Softw.
Eng.,Washington, DC, USA, 2004, pp. 480–490.
[14] M. Burger and A. Zeller, “Minimizing reproduction of software failures,” in Proc. Int. Symp. Softw. Testing Anal., New York, NY, USA, 2011
pp. 221–231.
[15] R. P. L. Buse and T. Zimmermann, “Information needs for software development analytics,” in Proc. Int. Conf. Softw. Eng., Piscataway, NJ,
USA, 2012, pp. 987–996

http://www.ijircce.com

