

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 10, October 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0310030 9330

MapReduce WordCount: Execution and

Effects of Altering Parameters
Dr. A.J Singh, Vibha Sarjolta

Professor, Department of Computer Science, Himachal Pradesh University, Shimla, India

Research Scholar, Department of Computer Science, Himachal Pradesh University Shimla, India

ABSTRACT: With the growing advent of new technologies, devices and communication means, a large amount of data

is being generated by everything around us that forms a part of what today is known as Big Data. In order to process such

colossal quantities of data Apache’s Hadoop acts as a software that deals with this type of huge and unstructured data

with efficiency. In this paper one of the basic programs of Hadoop, that is, MapReduce WordCount is executed in a

single node setup. The changes in the size of input files and the number of reduce tasks affecting the execution time of

the program is studied. This paper aims at comparing the execution time of WordCount under varying conditions.

KEYWORDS: Hadoop; WordCount; Reducer; Mapper; Execution Time

I. INTRODUCTION

Big Data is an all-encompassing term for any collection of data sets so large and complex that it becomes difficult to

process them using traditional data processing applications. Although Big Data doesn't refer to any specific quantity, the

term is often used when speaking about petabytes and exabytes of data.

 Scores of challenges are encountered when dealing with Big Data as its processing, storing and analysing. To process

the large volumes of data from different sources, for fast processing, a tool is required that will help such a large amount

of data to be processed easily and this is where Hadoop steps in. The Apache Hadoop project develops open-source

software for reliable, scalable, distributed computing. The Apache Hadoop software library is a framework that uses

simple programming models for the distributed processing of large data sets across clusters of computers. It is designed

to scale up from single servers to thousands of machines, each offering local computation and storage [1].

 Hadoop is specially designed for two core concepts: HDFS and MapReduce. Both are related to distributed

computation. Hadoop architecture is primarily a distributed master slave architecture that consists of a single master and

many slaves. The Hadoop Distributed File System (HDFS) is used for storage and MapReduce for computational

capabilities. The functions of Hadoop in the architecture are data partitioning and parallel computation of large datasets.

Its storage and computational capabilities scale with the addition of hosts to a Hadoop cluster, and can reach volume

sizes in the petabytes on clusters with thousands of hosts [2].

 The MapReduce master schedules the computational work on the slave nodes and organizes where the

computational work will be scheduled. The HDFS master is responsible for storing the files and partitioning the storage

across the slave nodes and keeping track of where data is located.

II. RELATED WORK

Since the MapReduce WordCount is one of the basic programs in Hadoop a significant amount of work has been done

in this area. In [3] the authors proposed a simple and general MapReduce performance model for better understanding the

impact of each component on overall program performance, and verified it in a small cluster. The results they found

indicated that the model can predict the performance of MapReduce system and its relation to the configuration.

According to the model, performance can be improved significantly by modifying Map split granularity and number of

reducers without modifying the framework. The authors in [4] discussed the various MapReduce applications like pi,

wordcount, grep, Terasort in their paper. These applications are already present in the Hadoop folder and its code be

easily accessed. They ran programs showing execution of these applications on a Hadoop cluster. In the paper,

performance had been shown with respect to and the number of nodes. The paper [5] found that as the number of nodes

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 10, October 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0310030 9331

increases, execution time decreases. The whole process of MapReduce processing and building up a cost function that

explicitly models the relationship between the amount of input data, the available system resources (Map and Reduce

slots), and the complexity of the Reduce function for the target MapReduce job. The model parameters were learned

from test runs with a small number of nodes. Based on this cost model, a number of problems can be solved, such as the

optimal amount of resources that can minimize the financial cost with a time deadline or minimize the time under certain

financial budget. Experimental results showed that this cost model performs well on tested MapReduce programs.

In [6] the authors describe performing a WordCount Map-Reduce Job in Single Node Apache Hadoop cluster

and compressing data using Lempel-Ziv-Oberhumer (LZO) algorithm. It was found that the LZO compression format

was designed considering speed as priority, it decompresses about twice as fast as gzip. The results show that the LZO

file is slightly larger than the corresponding gzip file, but both are much smaller than the original uncompressed file.

Additionally, the LZO file compressed nearly five times faster, and decompressed over two times faster.

III. EXECUTION OF MAPREDUCE WORDCOUNT

Word Count is the “Hello World” of Hadoop programming. WordCount example reads text files and counts the

occurrence of each word. The input is text files and the output is also text files, each line of which contains a word and

the count of how often it occurred, separated by a tab.

The MapReduce WordCount source code can be found in the examples folder of Hadoop from where it can be

run. Another way of running the WordCount program, used here, is compiling the .java file and creating its jar file and

then executing the program. The java source code for the WordCount program was taken from Apache official site [7]

for the latest stable version of Hadoop 2.7.1. The program includes Mapper and Reducer interfaces to provide the map

and reduce tasks.

Mapper

Mapper maps input key/value pairs to a set of intermediate key/value pairs. A given input pair may map to zero or many

output pairs. The Hadoop MapReduce framework spawns one map task for each InputSplit generated by

the InputFormat for the job [7]. All intermediate values associated with a given output key are subsequently grouped by

the framework, and passed to the Reducer(s) to determine the final output. The Mapper outputs are sorted and then

partitioned per Reducer. The total number of partitions is the same as the number of reduce tasks for the job.

Reducer

Reducer reduces a set of intermediate values which share a key to a smaller set of values. The number of reduces for the

job can be set using Job.setNumReduceTasks(int).Reducer has three primary phases: shuffle, sort and reduce [7]. Where

in the shuffle phase the output of the mapper phase is collected which is then sorted and the reduce phase outputs’ the

value.

Steps to Run the Program

1. Starting Hadoop Daemons

The Hadoop daemons are started using the commands

$ start-dfs.sh

$ start-yarn.sh

2. Creating a Directory in HDFS

In order to carry out any functions in Hadoop it is viable that the files that are used for input and output are stored in

HDFS which was done using the following command

$ cd /usr/local/hadoop

$ bin/hdfs dfs -mkdir /user

A directory named inputword was then created on the desktop that contains the text file [8] which served as an input in

the WordCount Program. This folder was then put in HDFS using

$ bin/hdfs dfs -put 'inputword' /user

https://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapreduce/Job.html

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 10, October 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0310030 9332

3. Compiling the Program

$ java –classpath $HADOOP_HOME/share/hadoop/common/hadoop-common-2.7.1.jar:$HADOOP_HOME

/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.7.1.jar:$HADOOP_HOME/share/hadoop/

common/lib/commons-cli-1.2.jar –d /home/hduser/Desktop/wordcount *.java

The path where java file is stored and the full name of the Hadoop version was given during the compilation of the

program. After compilation three class files were created: main class(WordCount), TokenizerMapper and

IntSumReducer which were saved together in a folder named wordcountc in wordcount directory.

4. Creating a jar

A jar file was created using the following

$ jar -cvf wordcountj.jar -C /home/hduser/Desktop/wordcount/wordcountc

5. Running the Program

 $ bin/hadoop jar /home/hduser/Desktop/wordcount/wordcountj.jar WordCount /user/inputword outputword

Where, inputword is the input directory and outputword the output directory.

Figure 1. Input Files stored in HDFS

6. Output

The output of the WordCount program can be viewed either on the NameNode web interface, http://localhost:50070 or

using the following command in Ubuntu terminal

$ /usr/local/hadoop/bin/hadoop fs –cat outputword/part-r-00000

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 10, October 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0310030 9333

Where, outputword/part-r-00000 is the folder that contains the output of the program.

Figure 2. Output of the WordCount program

IV. SET UP AND RESULTS

The programs were run in Single node Hadoop Cluster using Ubuntu 14.04LTS as a platform which was run in a

virtualized environment inside VirtualBox 4.3.2 Virtual Machine. Operating System: 64-bit Windows 7 Ultimate with

Intel Core i3 CPU M 350 @ 2.27 GHz and 3GB of RAM. The version of Hadoop used is 2.7.1 and Sun JAVA jdk-1.7.0.

Changing the size of input file

The WordCount program had been run using input files of different data sizes and its effect on the execution time of the

WordCount program is noted. Here, four files were taken as below:

 500MB-containg 8 small files of varying lengths

 1GB-containing 16 files of varying lengths

 4GB-containing 7 files of varying lengths

 8GB-single text file

INPUT FILE SIZE

EXECUTION TIME(in seconds)

500MB

366

1GB

655

4GB

1891

8GB

3593

Table 1. WordCount of varying file sizes with their respective execution time

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 10, October 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0310030 9334

From the table it can be observed that as the size of input in a WordCount program increase, the time taken also

increases, but not in the same proportion. A 1GB file takes 655seconds to execute and if the time taken were to increase

in the same proportion, then a 4GB file should have run in 2620seconds but instead it takes just 1891 seconds. This is

approximately 27% less. Similarly, for an 8GB file the time is reduced by 31% if we considered the execution time to be

eight times for what it was for input file is 1 GB.

Changing the number of Reduce tasks

Choosing the right size for the tasks for your job can immensely change the performance in Hadoop. Increasing the

number of tasks increases the framework overhead, but increases load balancing and lower the cost of failures [9].

In MapReduce, the WordCount program was altered using the mapreduce.job.reduces parameter. The input files

in this case were the same as those used in the previous setup. Here, comparison was made between programs when the

number of reduce tasks were altered from 5 to 15.This was done using the command given below:

$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar

 wordcount –D mapreduce.job.reduces=5 /user/inputword /user/hduser/output_word

Here, the number of reduce jobs is specified as 5, similarly, the reduce tasks can be changed to 15 as:

$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar

wordcount –D mapreduce.job.reduces=15 /user/inputword /user/hduser/output_word

Figure 3. Screenshot showing the output of 1GB File when number of reducers is 15

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 10, October 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0310030 9335

Figure 4. Comparison of WordCount program Execution time with different Reducers

Figure 4 represents the time taken by Files of sizes, 500MB, 1GB, 4GB and 8GB when the number of reduce

tasks are increased from 5 to 15.The figure shows a slight increase in the time when the reducer task are increased.

Although, the increase for smaller files is not very significant but for larger file, increasing the Reducers causes a

significant change in its execution time.

V. CONCLUSION AND FUTURE WORK

 The execution results showed that the time needed by a WordCount program for execution increases as the size of the

input files is increased. It is observed that although increasing the size causes an increase in the execution time of the

program, but large number of small files takes longer to execute as compared to a single larger file. It is also observed

that the increase in time is not proportional and it decreases as the files are increased in size.Also, an increase in the

number of reducers causes an increase in the time taken for the completion of WordCount program. We can also increase

the input file to a much larger size like peta and zettabytes to observe the change in time and also analyze the

performance. The setup used here is only a single node Hadoop cluster but it can also be extended to a multi node cluster

for further research.

REFERENCES

1. Apache Hadoop, https://hadoop.apache.org/ , Retrieved: 15-Oct-2015.

2. Alex Holmes,”Hadoop in practice”, Manning Publications, Second edition, 2014.

3. Xiao Yang and Jianling Sun, “An analytical performance model of MapReduce”, International Conference on Cloud Computing and

Intelligence Systems, IEEE, 2011.
4. Maurya, M., Mahajan, S.,” Performance analysis of MapReduce programs on Hadoop cluster”, World Congress on Information and

Communication Technologies (WICT), 2012.

5. Fengguang Tian and Keke Chen,” Towards Optimal Resource Provisioning for Running MapReduce Programs in Public Clouds”,
International Conference on Cloud Computing (CLOUD)”, IEEE 2011.

403

680

1945

3595

427

965

2312

4223

0

500

1000

1500

2000

2500

3000

3500

4000

4500

500MB 1GB 4GB 8GB

No. of Reducers-5

No. of Reducers-15

 File Size

T

im
e

(i
n

 s
ec

o
n

d
s)

https://hadoop.apache.org/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 10, October 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0310030 9336

6. Nandan Mirajkar, Sandeep Bhujbal , Aaradhana Deshmukh, “ Perform wordcount Map-Reduce Job in Single Node Apache Hadoop cluster
and compress data using Lempel-Ziv-Oberhumer (LZO) algorithm” , ArXiv , July 2013.

7. MapReduce Tutorial, https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-

core/MapReduceTutorial.html , Retrieved: 15-Oct-2015
8. https://github.com/ Retrieved: 16-Oct-2015

9. Hadoop Wiki, https://wiki.apache.org/hadoop/HowManyMapsAndReduces, Retrieved: 16-Oct-2015

BIOGRAPHY

Vibha Sarjolta, Student pursing M.Tech in Computer Science Engineering from Himachal Pradesh University,

Department of Computer Science, Shimla, India.

Professor Dr. A.J Singh, is a Professor in the Department of Computer Science, Himachal Pradesh University,

Shimla, India.

https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://github.com/
https://wiki.apache.org/hadoop/HowManyMapsAndReduces

	Shuffle
	Reduce

