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ABSTRACT: Data mining is gaining importance due to huge amount of data available. Retrieving information from 
the warehouse is not only tedious but also difficult in some cases. The existing algorithm does not provide fast 
computation and better result. Frequent itemset using density based spatial clustering is used in the proposed system so 
that support is counted by mapping the items from the candidate list into the buckets which is divided according to 
support known as Hash table structure. As the new itemset is encountered if item exist earlier then increase the bucket 
count else insert into new bucket. Thus in the end the bucket whose support count is less the minimum support is 
removed from the candidate set. 
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I. INTRODUCTION 
 

    As a volume of database increases day by day traditional frequent itemset mining algorithms becomes inefficient. As 
a solution to this problem parallel mining of frequent itemsets using DBFIUT (Density Based Frequent Itemset 
Ultrametric Tree) algorithm is implemented on MapReduce framework. More importantly, in the existing parallel-
FIUT algorithms lack a mechanism that enables automatic parallelization, load balancing, data distribution and fault 
tolerance on large computing cluster. Therefore, in the proposed system using DBFIUT algorithm rather than 
traditional FIU- Tree algorithm because to avoid building conditional patterns and to achieve compressed storage and 
to detect the noise using DBSCAN (Density Based Spatial Clustering of Application with Noise) algorithm. Proposed 
methodology builds this using Hadoop framework. The working flow of DBFIUT algorithm on MapReduce 
framework consists of three MapReduce job. Synthetic datasets are used for the experimental analysis. 
 

II. LITERATURE REVIEW 
 

 

    Min Chen [2014] proposed an Apriori algorithm using MapReduce framework. Apriori is a classic algorithm to 
generate huge amount of candidate itemsets by repeating scanning of the database. To improve the performance of the 
Apriori algorithm, MapReduce parallelization techniques has been proposed. However it has some disadvantages that 
processor has to scan the database multiple times and to exchange an excessive number of candidate itemsets with other 
processor. Apriori like frequent itemsets mining algorithm suffer from I/O overhead and synchronization overhead. 
    Riondato et al (2012) proposed a parallel randomized algorithm for approximate association rules mining in 
MapReduce. PARMA algorithm creates multiple small random samples of the transactional dataset and running an 
algorithm samples independently and in parallel. The final collections of frequent itemsets or association rules from 
samples are aggregated and filtered to provide an output. In this algorithm final result is an approximation of the exact 
output. PARAM algorithm is implemented in parallel MapReduce framework.  
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    Sagiroglu, S.; Sinanc, D. (20-24 May 2013),”Big Data: A Review” describe the big data content, its scope, methods, 
samples, advantages and challenges of Data. The critical issue about the Bigdata is the privacy and security. Big data 
samples describe the review about the atmosphere, biological science and research life sciences etc. By this paper, it 
concludes that any organization in any industry having big data can take the benefit from its careful analysis for the 
problem solving purpose. Using Knowledge Discovery from the Bigdata it is easy to get the information from the 
complicated data sets. 
    Puneet Singh Duggal, Sandulescu, V. ; Halcu, I. ; Neculoiu, G. ;( 17-19 Jan. 2013),”A Big Data implementation 
based on Grid Computing”, Grid Computing offered the advantage about the storage capabilities and the processing 
power and the Hadoop technology is used for the implementation purpose. Grid Computing provides the concept of 
distributed computing. The benefit of Grid computing center is the high storage capability and the high processing 
power. Grid Computing makes the big contributions among the scientific research, help the scientists to analyze and 
store the large and complex data. 
    Zhou (2010) proposed a FP-Growth with MapReduce framework. Frequent itemsets mining plays an essential role in 
data mining tasks. As a volume of data sets increases day by day, most of the existing parallel mining algorithms 
running on a single machine suffer from performance degradation. To improve the performance of the FP-Growth 
algorithm, many parallelization techniques have been proposed. A solution to this problem Frequent Pattern growth 
algorithm is implemented using MapReduce framework. FP growth has a disadvantage that it wants to scan the 
database multiple times and the recursive traversing of tree increases the computing time when it comes to 
multidimensional database. 
    K.W. Lin (2011) proposed a novel frequent pattern mining algorithms for very large database in cloud computing 
environments. As a volume of data increases or the minimum support count decreases however both the execution time 
and the memory requirement increases greatly. A solution to this problem distributed computing techniques has been 
utilized to improve the scalability and execution efficiency. This paper proposed a method to discover the frequent 
itemsets from large database using cloud computing techniques. In this paper construction and storage of FP tree using 
disk as the secondary memory. FP-Tree from the disk is proposed and it improves the performance in terms of 
efficiency and scalability. 
    Yu K. and Zhou Y (2010) proposed a DH-TRIE Frequent Pattern Mining on Hadoop using JPA. The FP growth is a 
traditional frequent itemsets mining algorithm in data mining when working with large volume of datasets and high 
dimensional datasets. FP growth has a disadvantage that it wants to scan the database multiple times and the recursive 
traversing of tree increases the computing time when it comes to multidimensional database. In this paper a distributed 
DH-TRIE frequent itemset mining algorithm is proposed based on Hadoop, the open cloud computing model, which 
solved the three problems (random-write, globalization and duration). Flexibility and scalability are improved in this 
algorithm. 
    P.  Viswanath and V.  S.  Babu proposed that there are number of clustering techniques but this paper mainly focuses 
on the widely used DBSCAN clustering density based approach where the efficiency of GenClus in detecting quality 
clusters over gene expression data. This work presents a density based clustering approach which finds useful 
subgroups of highly coherent genes within a cluster and obtains a hierarchical structure of the dataset where the sub 
clusters give the finer clustering of the dataset. This approach ultimately forms a distributed clustering algorithm. This 
approach helps to cluster the data locally and independently from each other and transmitted only aggregated 
information about the local data to a central server. Grid-based DBSCAN clustering technique quantizes the data set in 
to a no of cells and then work with objects belonging to these cells. The merging of grids and consequently clusters 
does not depend on a distance measure. It is determined by a predefined parameter. 
 

III. PROPOSED ALGORITHM 
 

 

    FIUT with DB SCAN can be derived from apriori by introducing additional control. To this purpose of proposed 
work makes use of an additional hash table that aims at limiting the generation of candidates in set as much as possible. 
The proposed system also progressively trims the database by discarding attributes in transaction or even by discarding 
entire transactions when they appear to be subsequently useless. The actual FIUT approach is not suitable for a large 
multidimensional database which is frequently updated. In that case, the incremental clustering approach is much 
better. The system with incremental concept saves lot of time and effort efficiently whereas the existing system has 
already suffering with some drawbacks and these problems are mainly faced in dynamic large databases by the existing 
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system. When some records are added to existing data, then it deals with this problem of scanning the whole database 
again. The time complexity is very high due to rescanning the whole database. It requires more effort as well. The 
Existing system is not efficient with respect to time and effort. That’s why new system with incremental clustering 
approach using DBSCAN with FIUT is more suitable to use in a large multidimensional dynamic database. 
    In proposed method, support is counted by mapping the items from the candidate list into the buckets which is 
divided according to support known as Hash table structure. As the new itemset is encountered if item exist earlier then 
increase the bucket count else insert into new bucket. Thus in the end the bucket whose support count is less the 
minimum support is removed from the candidate set. In computing, a hash table is used which is a data structure used 
to implement an associative array, a structure that can map keys to values. A hash function is used in hash table to 
compute an index into an array of buckets or slots, from which the desired value can be found. 
 
DBSCAN (Density Based Spatial Clustering of Applications with Noise) 
    One of the most common clustering algorithms and also most cited in scientific literature is Density Based Spatial 
Clustering of Applications with Noise (DBSCAN) which has the ability to produce arbitrary shape of clusters. Clusters 
are identified by looking at the density of points. Regions with a high density of points depict the existence of clusters 
whereas regions with a low density of points indicate clusters of noise or clusters of outliers. DBSCAN grows clusters 
according to a density based connectivity analysis. It defines a cluster as a maximal set of density-connected points. 
The key idea of density-based clustering is that for each object of a cluster the neighbourhood of a given radius has to 
contain at least a minimum number of objects (MinPts), i.e. the cardinality of the neighbourhood has to exceed some 
threshold. The algorithm DBSCAN was designed to efficiently discover the clusters and the noise in a database 
according to the above definitions. DBSCAN requires two parameters: ε (eps) and the minimum number of points 
required to form a cluster (Minpts). It starts with an arbitrary starting point that has not been visited. This point's ε-
neighbourhood is retrieved, and if it contains sufficiently many points, a cluster is started. Otherwise, the point is 
labelled as noise. 
 
Advantages of Proposed System 

 Additional hash table is added into the proposed system which reduces the database scan process than the 
existing system.  

 Three mapreduce job modules are involved in the proposed methodology for mining all the frequent itemsets. 
 It reduces the database scan than the existing system due to the division of three modules.  
 Minimum support count plays the important role in the proposed system. Therefore, the running time of the 

proposed algorithm is reduced.   
 Scalability of the proposed algorithm is higher when it comes to parallel mining of an enormous amount of 

data.  

Frequent Itemset Ultrametric Tree with Dbscan 
    DB-FIUT is a new method for mining frequent itemsets from the database. DB-FIUT has four major advantages 
over traditional FIU-tree like: it involves only two round of scanning which minimizes I/O overhead. Then the DB-
FIUT is a highly improved way to partition a database, which considerably reduces the search space by adding 
additional hash tables using hash functions. Next is here only frequent items in each transaction are inserted as nodes 
into the DB-FIUT for compressed storage. At last all frequent itemsets are generated without traversing the tree 
recursively by checking the leaves of each DB-FIUT which reduces computing time significantly. DB-FIUT consists 
of two phases to generate the frequent itemsets from the transactions by two rounds of scanning the database. 
1 Generating one Itemsets and K Itemsets 
    Phase1 consists of two round of scanning the database. At the first round of scanning the database frequent one item 
will be generated based on the minimum support count. At the second round of scanning the database all k-items will 
be generated by pruning the infrequent items from each transaction. 
2 Generating Frequent K Itemsets 
    Phase2 consists of a two process decompose each ‘h’ itemsets into ‘k’ itemsets. After decomposing process the 
repetitive construction of K-FIU-Tree and all ‘k’ frequent itemsets are generated by checking the leaves of FIU-
Tree where ‘k’ is from M down to 2. After decomposing process ‘k’ itemsets are generated that are used for the 
construction of K D B FIU Tree. Initially the root is labelled as null. Then each ‘k’ itemsets are inserted into the 
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tree. If first frequent item exists as one of the children of the root, then it denote the child as a temporary 1st root, if it 

is not exist then add a new node for this item as a child of the root node and denote it as temporary 1st root. Then the 

sth frequent item of the k itemset, where ‘s’ is from 2 to k - 1, check if the sth frequent item exists as one of the 

children of the temporary (s-1)th root, then denote the child as a temporary sth root. If it does not exist, then add a new 

node for this item as a child of the temporary (s-1)th root and denote it as a temporary sth root. This process is 
repeated until K-FIU Tree is constructed. By checking the leaf node all k frequent items will be generated. Each  
phase  of  Density based Frequent  Itemset  Ultrametric  Tree  is  explained  with  an example. Consider the 5 
transactional databases D as shown in the Table 1. 
 

                                                          Table1: Database D itemsets        
                               
   

T.ID ITEMS BOUGHT 

 100 a,c,d,f,g,i,m,p 

 200 a,b,c,f,l,m,o 

300 b,f,h,j,o 

400 b,c,k,s,p 

 500 a,c,e,f,l,m,n,p 
    During the phase 1 at the first round of scanning the database frequent one itemsets will be generated with the 
minimum support count value 2. Table 2 shows the frequent one itemset of the database D. During the phase 1 at the 
second round of scanning the database all ‘k’ itemsets will be generated by pruning the each infrequent item from each 
transactional datasets.  

Table 2: Frequent 1 itemsets      
 
 
 
 
 
 
 
 
 
 
    Table 3 shows all ‘k’ itemsets. During the phase 2 K-FIU Tree is constructed by using the ‘k’ itemsets generated 
after decomposing each ‘h’ itemsets into ‘k’ itemsets. i.e ‘acfmp’ and ‘abcfm’  can  be  decomposed  into  4-
itemsets  like  ‘abcf:1’,  ‘abcm:1’,  ‘abfm:1’, ‘acfm:1’,‘bcfm:1’, ‘acfm:2’, ‘acfp:2’, ‘acmp:2’, ‘afmp:2’, and ‘cfmp:2’. 
Similarly it can be decomposed into K to 2 items. 
 
                                                                        Table 3: All K Itemsets 

Itemsets Items Bought 

 
5-itemsets 

a,c,f,m,p 

a,b,c,f,m 
4-itemsets Ø 

3-itemsets b,c,p 

2-itemsets b,f 

Item Name No. of Items 

A 3 

B 4 

C 5 
F 4 

M 3 

P 4 
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5-DBFIUT- when k =5 insert all 5 itemsets into the tree. Initially create the root node as null and then each five 
itemsets (‘abcfm:1’) 5 nodes should be created. ‘a’ is a temporary root bode of ‘b’, ‘b’ is a temporary root node 
of ‘c’ like this items should be inserted. At the leaf node its path ‘abcfm’ with the count one is founded. Then insert the 
next 5 itemset ‘acfmp:2’, the first item a shares the child node of the root with the path ‘abcfm’ and then new branch is 
formed starting from a. At the leaf node, its path ‘acfmp’ with the count 2 is founded. Finally by checking the 
minimum support count, frequent 5 itemsets are generated L5= {Ø}. Figure 1 represents the 5-DBFIUT. 
 

                                           
        Figure 1: 5-DBFIUT                                                                                     Figure 2: 4-DBFIUT 
 
    4-DBFIUT when k=4 insert all 4 itemsets into the tree. All 4 itemsets are ‘abcf:1’, ‘abcm:1’, ‘acfm:2’, ‘acfp:2’, 
‘acmp:2’, ‘abfm:1’, ‘acfm:1’, ’bcfm:1’, ’afmp:2’, and ‘cfmp:2’. These itemsets are used to construct the 4-FIUT. Then 
by checking the leaf  node frequent four itemsets are generated. L4= {acfm}. Figure 2 represents THE 4-DBFIUT 
when k=3 insert all 3 itemsets into the tree. All 3 itemsets are ‘bcp:1’, ‘abc:1’,  ‘abf:1’,  ‘abm:1’,  ‘acf:1’,  ‘acm:1’,  
‘afm:1’,  ‘bcf:1’,  ‘bcm:1’,  ‘afp:2’, ‘amp:2’, ‘cfm:2’, ‘cfp:2’, ‘cmp:2’, ‘bfm:1’, ‘cfm:1’, ‘acf:2’, ‘acm:2’, ‘acp:2’, 
‘afm:2’ and ‘fmp:2’. These itemsets are used to construct the 3-DBFIUT. Then by checking the leaf node frequent 
three itemsets are generated. L3= {cfm, afm, acm and acf}. Figure 3 represents the 3-DBFIUT.     

                                        
                       Figure 3: 3-DBFIUT                                                                        Figure 4: 2-DBFIUT 
     2-FIUT when k=2 insert all 2 itemsets into the tree. All 2 itemsets are ‘am:1’, ‘bc:1’, ‘bf:1’, ‘bm:1’, ‘cf:1’, 
‘bf:1’, ‘bc:1’, ‘bp:1’, ‘cp:1’, ‘ab:1’, ‘ac:1’, ‘af:1’, ‘cm:1’, ‘fm:1’, ‘ac:2’, ‘af:2’, ‘am:2’, ‘ap:2’, ‘fm:2’, ‘fp:2’, 
‘cf:2’, ‘cm:2’, ‘cp:2’, and ‘mp:2’ . These itemsets are used for the construction of 2-DBFIUT. Then by checking the 
leaf node frequent two itemsets are generated. L2= {cp, am, cf, cm, ac, af, fm}. Figure 3.4 represents the 2-DBFIUT. 

IV.  EXPERIMENTAL DESIGN 
 

Modules Description 
 

1 Frequent One Itemsets Generation 
    The first MapReduce job is responsible for mining all frequent one- itemsets. A transaction database is partitioned 
into multiple input split files stored by the HDFS across multiple data nodes of a Hadoop cluster. Number of mapper 
will be executed based on number of input split. Each mapper sequentially reads each transaction from its local input 
split, where each transaction is stored in the format of key value pair<LongWritable offset, Text record> by the record 
reader. Then, mappers compute the frequencies of items and generate local one-itemsets. Next, these one-itemsets 
with the same key emitted by different mappers are sorted and merged in a specific reducer, which further 
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produces global one itemsets. Finally, infrequent items are pruned by applying the minsupport; and consequently, 
global frequent one-itemsets are generated and written in the form of pair<Text item, LongWritable count> as the 
output from the first MapReduce job. Importantly, frequent one-itemsets along with their counts are stored in a local 
file system, which becomes the input of the second MapReduce job. 
 
 

2 K Itemsets Generation 
    Given frequent one-itemsets generated by the first MapReduce job, the second MapReduce job applies a second 
round of scanning on the database to prune infrequent items from each transaction record. The second job marks an 
itemset as a k-itemset if it contains k frequent items (2 ≤ k ≤ M, where M is the maximal value of k in the pruned 
transactions). Each mapper of the second job takes transactions as input. Then, the mapper emits a set of pair 
<ArrayWritable itemsets, Longwritable ONE>, in which itemsets is composed of the number of the items produced by 
pruning and the set of items. These pairs obtained by the second MapReduce job’s mappers are combined and shuffled 
for the second job’s reducers. After performing the combination operation, each reducer emits key/value pairs, where 
the key is the number of each itemset and the value is each itemset and its count. More formally, the output of the 
second MapReduce job is pair <IntWritable itemnumber, MapWritable<ArrayWritable k-item, LongWritable SUM>>. 
Figure1.2 outlines the pseudocode of the second job’s Map and Reduce functions. It is important to ensure that 
frequent items in each transaction should retain their lexicographical order in order to facilitate the next phase. 
 
3 Frequent K Itemsets Generation 
    The third MapReduce job a computationally expensive phase is dedicated to: 1) decomposing itemsets; 2) 
constructing k-FIU trees; and 3) mining frequent itemsets. The main goal of each mapper is twofold: 1) to 
decompose each k-itemset obtained by the second MapReduce job into a list of small-sized sets, where the number of 
each set is anywhere between 2 to k − 1 and 2) to construct  an  DBFIU-tree  by  merging  local  decomposition  results  
with  the  same length. The third MapReduce job is highly scalable, because the decomposition procedure of each 
mapper is independent of the other mappers. In other words, the multiple mappers can perform the decomposition 
process in parallel.  
    Such an FIU-tree construction improves data storage efficiency and I/O performance; the improvement is made 
possible things to merging the same itemsets in advance using small DB-FIUT trees.  Non leaf nodes include item-
name and node-link; leaf nodes include item-name and its support. By parsing the key-value pair (k2, v2), the reducer 
is responsible for constructing k2-DBFIU-tree and mining all frequent itemsets only by checking the count value of 
each leaf in the k2-DBFIU-tree without repeatedly traversing the tree.  
 
PARAMETERS FOR EVALUATION 
Minimum Support Count 
    Minimum support count plays the important role in mining frequent itemsets.  When user increase the minimum 
support threshold the running time of the proposed algorithm reduces. A small minimum support slows down the 
performance of the evaluated algorithms. This is because an increasing number of items satisfy the small minimum 
support when the minsupport is decreased; it takes an increased amount of time to process the large number of 
items. Figure 5 shows the execution time of four different minimum support counts.  
Scalability 
    In this experiment, evaluate the scalability of the proposed algorithm when the size of input dataset grows 
dramatically. The parallel mining process is slowed down by the excessive data amount that has to be scanned twice. 
The increased dataset leads to a long scanning time. An output of the second MapReduce job are distributed 
and stored in intermediate files based on the length of itemset; these files are accessed by the third MapReduce job as 
an input. Further, the decomposed results are written into these external files. In summary, the scalability of the 
proposed algorithm is higher when it comes to parallel mining of an enormous amount of data. Figure 6 shows the 
running time of different sized datasets. 
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                                    Figure 5 Minimum Support                                                                Figure 6 Scalability                                   
 
EXPERIMENTAL SETUP 
    In the large set of samples market basket dataset only 300 samples are taken, in that 87 market basket dataset are 
classified as frequent itemsets and 22300 market basket dataset are classified as News market basket dataset. According 
to the algorithm, 8700 Frequent itemsets market basket dataset are classified as 3900 Frequent itemsets Negative 
market basket dataset and 4800 Frequent itemsets Non-Negative market basket dataset which are shown in the below 
table 4, table 5 shows the experimental result of proposed system and figure 7 shows the comparison chart between 
existing and proposed system. 

Table 4: Frequent itemsets classification 

 
Table 5: Experimental result of existing and proposed system 

Algorithm False positive False Negative Entity Verified Performance 
Accuracy (%) 

FIUT (Existing) 56 38 24 93.6 
DB-FIUT (Proposed) 54 40 35 95 

 

Total Number of Frequent itemsets 50              - 
Correctly Classified Frequent itemsets 50 100% Accuracy  
Incorrectly Classified Frequent itemsets          -NUL- 0%     Accuracy  
Mean absolute error          0.0553             - 
Root mean squared error       0.0593             - 
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      Figure 7: Comparison chart between existing and proposed system 

V. CONCLUSION AND FUTURE WORK 
 

    The parallel mining of frequent itemsets (FI) using Frequent Itemset Ultrametric tree (FIUT) with Density Based 
Spatial Clustering of Applications with Noise (DBSCAN) on MapReduce framework is used in the proposed system to 
solve the scalability and efficiency problem in an existing frequent itemset. In Proposed system, it incorporates the 
Density Based Frequent Itemset Ultrametric Tree by adding additional hash tables rather than using conventional FP 
trees, thereby achieving compressed storage and avoiding the necessity to build conditional pattern bases. The 
proposed algorithm integrates three MapReduce jobs to accomplish parallel mining of frequent itemsets. The first 
MapReduce job is responsible for mining all frequent one- itemsets. The second MapReduce job applies a second 
round of scanning on the database to prune infrequent items from each transaction record. At the end of the third 
MapReduce job all frequent K-itemsets are generated. Synthetic datasets is used in the experiments to evaluate the 
performance of the proposed DB-FIUT algorithm on MapReduce framework. As a future enhancement, in the 
MapReduce framework, distributed cache technique can be used in distributed read-only data file. A new technique 
called LRU (Least Recently Used) cache technique which reduces the recompilation time and it also keeps tracking of 
what item was used when. Distributed cache technique consisted with least memory space so LRU cache can be 
implemented in the future work to allocate memory space simultaneously.  
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