

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501007 56

FI-DBSCAN: Frequent Itemset Ultrametric
Trees with Density Based Spatial Clustering
Of Applications with Noise Using Mapreduce

in Big Data

V.Swathi Kiruthika1, Dr.V.Thiagarasu2
M.Phil Scholar, Dept. of Computer Science, Gobi Arts & Science College, Gobichettipalayam, Tamilnadu, India

Associate Professor, Dept. of Computer Science, Gobi Arts & Science College, Gobichettipalayam, Tamilnadu, India

ABSTRACT: Data mining is gaining importance due to huge amount of data available. Retrieving information from
the warehouse is not only tedious but also difficult in some cases. The existing algorithm does not provide fast
computation and better result. Frequent itemset using density based spatial clustering is used in the proposed system so
that support is counted by mapping the items from the candidate list into the buckets which is divided according to
support known as Hash table structure. As the new itemset is encountered if item exist earlier then increase the bucket
count else insert into new bucket. Thus in the end the bucket whose support count is less the minimum support is
removed from the candidate set.

KEYWORDS: Bigdata, Hadoop, MapReduce, HashTables, HashFunction, Frequent Itemsets, DBSCAN, MinPts.

I. INTRODUCTION

 As a volume of database increases day by day traditional frequent itemset mining algorithms becomes inefficient. As
a solution to this problem parallel mining of frequent itemsets using DBFIUT (Density Based Frequent Itemset
Ultrametric Tree) algorithm is implemented on MapReduce framework. More importantly, in the existing parallel-
FIUT algorithms lack a mechanism that enables automatic parallelization, load balancing, data distribution and fault
tolerance on large computing cluster. Therefore, in the proposed system using DBFIUT algorithm rather than
traditional FIU- Tree algorithm because to avoid building conditional patterns and to achieve compressed storage and
to detect the noise using DBSCAN (Density Based Spatial Clustering of Application with Noise) algorithm. Proposed
methodology builds this using Hadoop framework. The working flow of DBFIUT algorithm on MapReduce
framework consists of three MapReduce job. Synthetic datasets are used for the experimental analysis.

II. LITERATURE REVIEW

 Min Chen [2014] proposed an Apriori algorithm using MapReduce framework. Apriori is a classic algorithm to
generate huge amount of candidate itemsets by repeating scanning of the database. To improve the performance of the
Apriori algorithm, MapReduce parallelization techniques has been proposed. However it has some disadvantages that
processor has to scan the database multiple times and to exchange an excessive number of candidate itemsets with other
processor. Apriori like frequent itemsets mining algorithm suffer from I/O overhead and synchronization overhead.
 Riondato et al (2012) proposed a parallel randomized algorithm for approximate association rules mining in
MapReduce. PARMA algorithm creates multiple small random samples of the transactional dataset and running an
algorithm samples independently and in parallel. The final collections of frequent itemsets or association rules from
samples are aggregated and filtered to provide an output. In this algorithm final result is an approximation of the exact
output. PARAM algorithm is implemented in parallel MapReduce framework.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501007 57

 Sagiroglu, S.; Sinanc, D. (20-24 May 2013),”Big Data: A Review” describe the big data content, its scope, methods,
samples, advantages and challenges of Data. The critical issue about the Bigdata is the privacy and security. Big data
samples describe the review about the atmosphere, biological science and research life sciences etc. By this paper, it
concludes that any organization in any industry having big data can take the benefit from its careful analysis for the
problem solving purpose. Using Knowledge Discovery from the Bigdata it is easy to get the information from the
complicated data sets.
 Puneet Singh Duggal, Sandulescu, V. ; Halcu, I. ; Neculoiu, G. ;(17-19 Jan. 2013),”A Big Data implementation
based on Grid Computing”, Grid Computing offered the advantage about the storage capabilities and the processing
power and the Hadoop technology is used for the implementation purpose. Grid Computing provides the concept of
distributed computing. The benefit of Grid computing center is the high storage capability and the high processing
power. Grid Computing makes the big contributions among the scientific research, help the scientists to analyze and
store the large and complex data.
 Zhou (2010) proposed a FP-Growth with MapReduce framework. Frequent itemsets mining plays an essential role in
data mining tasks. As a volume of data sets increases day by day, most of the existing parallel mining algorithms
running on a single machine suffer from performance degradation. To improve the performance of the FP-Growth
algorithm, many parallelization techniques have been proposed. A solution to this problem Frequent Pattern growth
algorithm is implemented using MapReduce framework. FP growth has a disadvantage that it wants to scan the
database multiple times and the recursive traversing of tree increases the computing time when it comes to
multidimensional database.
 K.W. Lin (2011) proposed a novel frequent pattern mining algorithms for very large database in cloud computing
environments. As a volume of data increases or the minimum support count decreases however both the execution time
and the memory requirement increases greatly. A solution to this problem distributed computing techniques has been
utilized to improve the scalability and execution efficiency. This paper proposed a method to discover the frequent
itemsets from large database using cloud computing techniques. In this paper construction and storage of FP tree using
disk as the secondary memory. FP-Tree from the disk is proposed and it improves the performance in terms of
efficiency and scalability.
 Yu K. and Zhou Y (2010) proposed a DH-TRIE Frequent Pattern Mining on Hadoop using JPA. The FP growth is a
traditional frequent itemsets mining algorithm in data mining when working with large volume of datasets and high
dimensional datasets. FP growth has a disadvantage that it wants to scan the database multiple times and the recursive
traversing of tree increases the computing time when it comes to multidimensional database. In this paper a distributed
DH-TRIE frequent itemset mining algorithm is proposed based on Hadoop, the open cloud computing model, which
solved the three problems (random-write, globalization and duration). Flexibility and scalability are improved in this
algorithm.
 P. Viswanath and V. S. Babu proposed that there are number of clustering techniques but this paper mainly focuses
on the widely used DBSCAN clustering density based approach where the efficiency of GenClus in detecting quality
clusters over gene expression data. This work presents a density based clustering approach which finds useful
subgroups of highly coherent genes within a cluster and obtains a hierarchical structure of the dataset where the sub
clusters give the finer clustering of the dataset. This approach ultimately forms a distributed clustering algorithm. This
approach helps to cluster the data locally and independently from each other and transmitted only aggregated
information about the local data to a central server. Grid-based DBSCAN clustering technique quantizes the data set in
to a no of cells and then work with objects belonging to these cells. The merging of grids and consequently clusters
does not depend on a distance measure. It is determined by a predefined parameter.

III. PROPOSED ALGORITHM

 FIUT with DB SCAN can be derived from apriori by introducing additional control. To this purpose of proposed
work makes use of an additional hash table that aims at limiting the generation of candidates in set as much as possible.
The proposed system also progressively trims the database by discarding attributes in transaction or even by discarding
entire transactions when they appear to be subsequently useless. The actual FIUT approach is not suitable for a large
multidimensional database which is frequently updated. In that case, the incremental clustering approach is much
better. The system with incremental concept saves lot of time and effort efficiently whereas the existing system has
already suffering with some drawbacks and these problems are mainly faced in dynamic large databases by the existing

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501007 58

system. When some records are added to existing data, then it deals with this problem of scanning the whole database
again. The time complexity is very high due to rescanning the whole database. It requires more effort as well. The
Existing system is not efficient with respect to time and effort. That’s why new system with incremental clustering
approach using DBSCAN with FIUT is more suitable to use in a large multidimensional dynamic database.
 In proposed method, support is counted by mapping the items from the candidate list into the buckets which is
divided according to support known as Hash table structure. As the new itemset is encountered if item exist earlier then
increase the bucket count else insert into new bucket. Thus in the end the bucket whose support count is less the
minimum support is removed from the candidate set. In computing, a hash table is used which is a data structure used
to implement an associative array, a structure that can map keys to values. A hash function is used in hash table to
compute an index into an array of buckets or slots, from which the desired value can be found.

DBSCAN (Density Based Spatial Clustering of Applications with Noise)
 One of the most common clustering algorithms and also most cited in scientific literature is Density Based Spatial
Clustering of Applications with Noise (DBSCAN) which has the ability to produce arbitrary shape of clusters. Clusters
are identified by looking at the density of points. Regions with a high density of points depict the existence of clusters
whereas regions with a low density of points indicate clusters of noise or clusters of outliers. DBSCAN grows clusters
according to a density based connectivity analysis. It defines a cluster as a maximal set of density-connected points.
The key idea of density-based clustering is that for each object of a cluster the neighbourhood of a given radius has to
contain at least a minimum number of objects (MinPts), i.e. the cardinality of the neighbourhood has to exceed some
threshold. The algorithm DBSCAN was designed to efficiently discover the clusters and the noise in a database
according to the above definitions. DBSCAN requires two parameters: ε (eps) and the minimum number of points
required to form a cluster (Minpts). It starts with an arbitrary starting point that has not been visited. This point's ε-
neighbourhood is retrieved, and if it contains sufficiently many points, a cluster is started. Otherwise, the point is
labelled as noise.

Advantages of Proposed System

 Additional hash table is added into the proposed system which reduces the database scan process than the
existing system.

 Three mapreduce job modules are involved in the proposed methodology for mining all the frequent itemsets.
 It reduces the database scan than the existing system due to the division of three modules.
 Minimum support count plays the important role in the proposed system. Therefore, the running time of the

proposed algorithm is reduced.
 Scalability of the proposed algorithm is higher when it comes to parallel mining of an enormous amount of

data.

Frequent Itemset Ultrametric Tree with Dbscan
 DB-FIUT is a new method for mining frequent itemsets from the database. DB-FIUT has four major advantages
over traditional FIU-tree like: it involves only two round of scanning which minimizes I/O overhead. Then the DB-
FIUT is a highly improved way to partition a database, which considerably reduces the search space by adding
additional hash tables using hash functions. Next is here only frequent items in each transaction are inserted as nodes
into the DB-FIUT for compressed storage. At last all frequent itemsets are generated without traversing the tree
recursively by checking the leaves of each DB-FIUT which reduces computing time significantly. DB-FIUT consists
of two phases to generate the frequent itemsets from the transactions by two rounds of scanning the database.
1 Generating one Itemsets and K Itemsets
 Phase1 consists of two round of scanning the database. At the first round of scanning the database frequent one item
will be generated based on the minimum support count. At the second round of scanning the database all k-items will
be generated by pruning the infrequent items from each transaction.
2 Generating Frequent K Itemsets
 Phase2 consists of a two process decompose each ‘h’ itemsets into ‘k’ itemsets. After decomposing process the
repetitive construction of K-FIU-Tree and all ‘k’ frequent itemsets are generated by checking the leaves of FIU-
Tree where ‘k’ is from M down to 2. After decomposing process ‘k’ itemsets are generated that are used for the
construction of K D B FIU Tree. Initially the root is labelled as null. Then each ‘k’ itemsets are inserted into the

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501007 59

tree. If first frequent item exists as one of the children of the root, then it denote the child as a temporary 1st root, if it

is not exist then add a new node for this item as a child of the root node and denote it as temporary 1st root. Then the

sth frequent item of the k itemset, where ‘s’ is from 2 to k - 1, check if the sth frequent item exists as one of the

children of the temporary (s-1)th root, then denote the child as a temporary sth root. If it does not exist, then add a new

node for this item as a child of the temporary (s-1)th root and denote it as a temporary sth root. This process is
repeated until K-FIU Tree is constructed. By checking the leaf node all k frequent items will be generated. Each
phase of Density based Frequent Itemset Ultrametric Tree is explained with an example. Consider the 5
transactional databases D as shown in the Table 1.

 Table1: Database D itemsets

T.ID ITEMS BOUGHT

 100 a,c,d,f,g,i,m,p

 200 a,b,c,f,l,m,o

300 b,f,h,j,o

400 b,c,k,s,p

 500 a,c,e,f,l,m,n,p
 During the phase 1 at the first round of scanning the database frequent one itemsets will be generated with the
minimum support count value 2. Table 2 shows the frequent one itemset of the database D. During the phase 1 at the
second round of scanning the database all ‘k’ itemsets will be generated by pruning the each infrequent item from each
transactional datasets.

Table 2: Frequent 1 itemsets

 Table 3 shows all ‘k’ itemsets. During the phase 2 K-FIU Tree is constructed by using the ‘k’ itemsets generated
after decomposing each ‘h’ itemsets into ‘k’ itemsets. i.e ‘acfmp’ and ‘abcfm’ can be decomposed into 4-
itemsets like ‘abcf:1’, ‘abcm:1’, ‘abfm:1’, ‘acfm:1’,‘bcfm:1’, ‘acfm:2’, ‘acfp:2’, ‘acmp:2’, ‘afmp:2’, and ‘cfmp:2’.
Similarly it can be decomposed into K to 2 items.

 Table 3: All K Itemsets

Itemsets Items Bought

5-itemsets

a,c,f,m,p

a,b,c,f,m
4-itemsets Ø

3-itemsets b,c,p

2-itemsets b,f

Item Name No. of Items

A 3

B 4

C 5
F 4

M 3

P 4

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501007 60

5-DBFIUT- when k =5 insert all 5 itemsets into the tree. Initially create the root node as null and then each five
itemsets (‘abcfm:1’) 5 nodes should be created. ‘a’ is a temporary root bode of ‘b’, ‘b’ is a temporary root node
of ‘c’ like this items should be inserted. At the leaf node its path ‘abcfm’ with the count one is founded. Then insert the
next 5 itemset ‘acfmp:2’, the first item a shares the child node of the root with the path ‘abcfm’ and then new branch is
formed starting from a. At the leaf node, its path ‘acfmp’ with the count 2 is founded. Finally by checking the
minimum support count, frequent 5 itemsets are generated L5= {Ø}. Figure 1 represents the 5-DBFIUT.

 Figure 1: 5-DBFIUT Figure 2: 4-DBFIUT

 4-DBFIUT when k=4 insert all 4 itemsets into the tree. All 4 itemsets are ‘abcf:1’, ‘abcm:1’, ‘acfm:2’, ‘acfp:2’,
‘acmp:2’, ‘abfm:1’, ‘acfm:1’, ’bcfm:1’, ’afmp:2’, and ‘cfmp:2’. These itemsets are used to construct the 4-FIUT. Then
by checking the leaf node frequent four itemsets are generated. L4= {acfm}. Figure 2 represents THE 4-DBFIUT
when k=3 insert all 3 itemsets into the tree. All 3 itemsets are ‘bcp:1’, ‘abc:1’, ‘abf:1’, ‘abm:1’, ‘acf:1’, ‘acm:1’,
‘afm:1’, ‘bcf:1’, ‘bcm:1’, ‘afp:2’, ‘amp:2’, ‘cfm:2’, ‘cfp:2’, ‘cmp:2’, ‘bfm:1’, ‘cfm:1’, ‘acf:2’, ‘acm:2’, ‘acp:2’,
‘afm:2’ and ‘fmp:2’. These itemsets are used to construct the 3-DBFIUT. Then by checking the leaf node frequent
three itemsets are generated. L3= {cfm, afm, acm and acf}. Figure 3 represents the 3-DBFIUT.

 Figure 3: 3-DBFIUT Figure 4: 2-DBFIUT
 2-FIUT when k=2 insert all 2 itemsets into the tree. All 2 itemsets are ‘am:1’, ‘bc:1’, ‘bf:1’, ‘bm:1’, ‘cf:1’,
‘bf:1’, ‘bc:1’, ‘bp:1’, ‘cp:1’, ‘ab:1’, ‘ac:1’, ‘af:1’, ‘cm:1’, ‘fm:1’, ‘ac:2’, ‘af:2’, ‘am:2’, ‘ap:2’, ‘fm:2’, ‘fp:2’,
‘cf:2’, ‘cm:2’, ‘cp:2’, and ‘mp:2’ . These itemsets are used for the construction of 2-DBFIUT. Then by checking the
leaf node frequent two itemsets are generated. L2= {cp, am, cf, cm, ac, af, fm}. Figure 3.4 represents the 2-DBFIUT.

IV. EXPERIMENTAL DESIGN

Modules Description

1 Frequent One Itemsets Generation
 The first MapReduce job is responsible for mining all frequent one- itemsets. A transaction database is partitioned
into multiple input split files stored by the HDFS across multiple data nodes of a Hadoop cluster. Number of mapper
will be executed based on number of input split. Each mapper sequentially reads each transaction from its local input
split, where each transaction is stored in the format of key value pair<LongWritable offset, Text record> by the record
reader. Then, mappers compute the frequencies of items and generate local one-itemsets. Next, these one-itemsets
with the same key emitted by different mappers are sorted and merged in a specific reducer, which further

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501007 61

produces global one itemsets. Finally, infrequent items are pruned by applying the minsupport; and consequently,
global frequent one-itemsets are generated and written in the form of pair<Text item, LongWritable count> as the
output from the first MapReduce job. Importantly, frequent one-itemsets along with their counts are stored in a local
file system, which becomes the input of the second MapReduce job.

2 K Itemsets Generation
 Given frequent one-itemsets generated by the first MapReduce job, the second MapReduce job applies a second
round of scanning on the database to prune infrequent items from each transaction record. The second job marks an
itemset as a k-itemset if it contains k frequent items (2 ≤ k ≤ M, where M is the maximal value of k in the pruned
transactions). Each mapper of the second job takes transactions as input. Then, the mapper emits a set of pair
<ArrayWritable itemsets, Longwritable ONE>, in which itemsets is composed of the number of the items produced by
pruning and the set of items. These pairs obtained by the second MapReduce job’s mappers are combined and shuffled
for the second job’s reducers. After performing the combination operation, each reducer emits key/value pairs, where
the key is the number of each itemset and the value is each itemset and its count. More formally, the output of the
second MapReduce job is pair <IntWritable itemnumber, MapWritable<ArrayWritable k-item, LongWritable SUM>>.
Figure1.2 outlines the pseudocode of the second job’s Map and Reduce functions. It is important to ensure that
frequent items in each transaction should retain their lexicographical order in order to facilitate the next phase.

3 Frequent K Itemsets Generation
 The third MapReduce job a computationally expensive phase is dedicated to: 1) decomposing itemsets; 2)
constructing k-FIU trees; and 3) mining frequent itemsets. The main goal of each mapper is twofold: 1) to
decompose each k-itemset obtained by the second MapReduce job into a list of small-sized sets, where the number of
each set is anywhere between 2 to k − 1 and 2) to construct an DBFIU-tree by merging local decomposition results
with the same length. The third MapReduce job is highly scalable, because the decomposition procedure of each
mapper is independent of the other mappers. In other words, the multiple mappers can perform the decomposition
process in parallel.
 Such an FIU-tree construction improves data storage efficiency and I/O performance; the improvement is made
possible things to merging the same itemsets in advance using small DB-FIUT trees. Non leaf nodes include item-
name and node-link; leaf nodes include item-name and its support. By parsing the key-value pair (k2, v2), the reducer
is responsible for constructing k2-DBFIU-tree and mining all frequent itemsets only by checking the count value of
each leaf in the k2-DBFIU-tree without repeatedly traversing the tree.

PARAMETERS FOR EVALUATION
Minimum Support Count
 Minimum support count plays the important role in mining frequent itemsets. When user increase the minimum
support threshold the running time of the proposed algorithm reduces. A small minimum support slows down the
performance of the evaluated algorithms. This is because an increasing number of items satisfy the small minimum
support when the minsupport is decreased; it takes an increased amount of time to process the large number of
items. Figure 5 shows the execution time of four different minimum support counts.
Scalability
 In this experiment, evaluate the scalability of the proposed algorithm when the size of input dataset grows
dramatically. The parallel mining process is slowed down by the excessive data amount that has to be scanned twice.
The increased dataset leads to a long scanning time. An output of the second MapReduce job are distributed
and stored in intermediate files based on the length of itemset; these files are accessed by the third MapReduce job as
an input. Further, the decomposed results are written into these external files. In summary, the scalability of the
proposed algorithm is higher when it comes to parallel mining of an enormous amount of data. Figure 6 shows the
running time of different sized datasets.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501007 62

 Figure 5 Minimum Support Figure 6 Scalability

EXPERIMENTAL SETUP
 In the large set of samples market basket dataset only 300 samples are taken, in that 87 market basket dataset are
classified as frequent itemsets and 22300 market basket dataset are classified as News market basket dataset. According
to the algorithm, 8700 Frequent itemsets market basket dataset are classified as 3900 Frequent itemsets Negative
market basket dataset and 4800 Frequent itemsets Non-Negative market basket dataset which are shown in the below
table 4, table 5 shows the experimental result of proposed system and figure 7 shows the comparison chart between
existing and proposed system.

Table 4: Frequent itemsets classification

Table 5: Experimental result of existing and proposed system

Algorithm False positive False Negative Entity Verified Performance
Accuracy (%)

FIUT (Existing) 56 38 24 93.6
DB-FIUT (Proposed) 54 40 35 95

Total Number of Frequent itemsets 50 -
Correctly Classified Frequent itemsets 50 100% Accuracy
Incorrectly Classified Frequent itemsets -NUL- 0% Accuracy
Mean absolute error 0.0553 -
Root mean squared error 0.0593 -

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501007 63

 Figure 7: Comparison chart between existing and proposed system

V. CONCLUSION AND FUTURE WORK

 The parallel mining of frequent itemsets (FI) using Frequent Itemset Ultrametric tree (FIUT) with Density Based
Spatial Clustering of Applications with Noise (DBSCAN) on MapReduce framework is used in the proposed system to
solve the scalability and efficiency problem in an existing frequent itemset. In Proposed system, it incorporates the
Density Based Frequent Itemset Ultrametric Tree by adding additional hash tables rather than using conventional FP
trees, thereby achieving compressed storage and avoiding the necessity to build conditional pattern bases. The
proposed algorithm integrates three MapReduce jobs to accomplish parallel mining of frequent itemsets. The first
MapReduce job is responsible for mining all frequent one- itemsets. The second MapReduce job applies a second
round of scanning on the database to prune infrequent items from each transaction record. At the end of the third
MapReduce job all frequent K-itemsets are generated. Synthetic datasets is used in the experiments to evaluate the
performance of the proposed DB-FIUT algorithm on MapReduce framework. As a future enhancement, in the
MapReduce framework, distributed cache technique can be used in distributed read-only data file. A new technique
called LRU (Least Recently Used) cache technique which reduces the recompilation time and it also keeps tracking of
what item was used when. Distributed cache technique consisted with least memory space so LRU cache can be
implemented in the future work to allocate memory space simultaneously.

REFERENCES

1. A.B. Patel, M. Birla and U. Nair, "Addressing big data problem using Hadoop and Map Reduce”, “Nirma University International Conference
on Engineering (NUiCONE)”, Ahmedabad, 2012.

2. Agrawal, R. and Srikant, R. “Mining sequential patterns” IEEE,1995.
3. Andrea Pietracaprina , Geppino Pucci , Matteo Riondato , Francesco Silvestri , Eli Upfal, “Space-round tradeoffs for MapReduce

computations”, “Proceedings of the 26th ACM international conference on Supercomputing”, June 25-29, 2012.
4. B.G.Obula Reddy1, Dr. Maligela Ussenaiah2, “ Literature Survey On Clustering Techniques”, IOSR Journal of Computer Engineering, Vol.

3,pp. 01-12, July-August 2012.
5. Chang E.Y., Li H., Wang Y., Zhang D. and Zhang M. , “PFP: Parallel FP-growth for query recommendation”, “in Proc. ACM Conf.

Recommend.Syst.”, Lausanne, Switzerland, 2008.
6. Chang W.L., Chen P.L. and Lin K.W., “A novel frequent pattern mining algorithm for very large databases in cloud computing environments’,

“in Proc. IEEE Int. Conf. Granular Comput. (GrC)”, Kaohsiung, Taiwan, 2011.
7. Chunyan H., Hong S., Huaxuan Z. and Shiping s. (2013), ‘The study of improved FP-growth algorithm in MapReduce’ in Proc. 1st Int.

Workshop Cloud Comput. Inf. Security, Shanghai, China, 2013.
8. D. Huang, Y. Song, R. Routray and F. Qin, "Smart Cache: An Optimized MapReduce Implementation of Frequent Itemset Mining", “Cloud

Engineering (IC2E), 2015 IEEE International Conference on, Tempe”, AZ, 2015.
9. Dean J. and Ghemawat S., ‘MapReduce: Simplified data processing on large clusters’, Commun. ACM, 2008.
10. Dean J. and Ghemawat S., ‘MapReduce: A flexible data processing Tool’, Commun. ACM, 2010.

0
20
40
60
80

100

Accuracy (%)

False positive rate False Negative rate Entity Verified for
each records

Performance

Accuracy in
Percentage

Overall Comparision Between FIUT and DB -FIUT
FIUT DB-FIUT

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com
Vol. 5, Issue 1, January 2017

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2017. 0501007 64

11. Glory H. Shah, C. K. Bhensdadia, Amit P. Ganatra ,“An Empirical Evaluation of Density-Based Clustering Techniques”,International Journal
of Soft Computing and Engineering, Vol. 2, pp. 216-223, March 2012.

12. Hsueh S.C., Lin M.Y. and Lee P.Y. , “Apriori-based frequent itemset mining algorithms on MapReduce”, “in Proc. 6th Int. Conf. Ubiquit. Inf.
Manage. Commun. (ICUIMC)”, Danang, Vietnam, 2012.

13. J. Neerbek, “Message-driven FP-growth,” in Proc. WICSA/ECSA Compan. Vol., Helsinki, Finland, 2012.
14. K. Mumtaz et al, “A Novel Density based improved kmeans Clustering Algorithm – Dbkmeans”, International Journal on Computer Science

and Engineering, Vol. 02, pp. 213-218, 2010.
15. Liang F., Kirsh I., Shi Z. and Yang L., “DH-TRIE frequent pattern mining on Hadoop using JPA”, “in Proc. IEEE Int. Conf. Granular Comput.

(GrC), Kaohsiung”, Taiwan,2011.
16. M. Riondato, J. A. DeBrabant, R. Fonseca, and E. Upfal, “PARMA: A parallel randomized algorithm for approximate association rules mining

in MapReduce,” in Proc. 21st ACM Int. Conf. Inf. Knowl. Manage., Maui, HI, USA, 2012.
17. M.Parimala, Daphne Lopez, N.C. Senthilkumar ”A Survey on Density Based Clustering Algorithms for Mining Large Spatial Databases”,

International Journal of Advanced Science and Technology Vol. 31, pp. 59-66, June-2011.
18. Mukherjee, A.; Datta, J.; Jorapur, R.; Singhvi, R.; Haloi, S.; Akram, W., “Shared disk big data analytics with Apache Hadoop”.December,2012.
19. S. Hong, Z. Huaxuan, C. Shiping, and H. Chunyan, “The studyof improved FP-growth algorithm in MapReduce,” in Proc. 1st Int. Workshop

Cloud Comput. Inf. Security, Shanghai, China, 2013.
20. S. Sagiroglu and D. Sinanc, "Big data: A review", “Collaboration Technologies and Systems (CTS)”, International Conference on, San Diego,

CA, 2013.
21. S. Rathi and C. A. Dhote, "Using parallel approach in pre-processing to improve frequent pattern growth algorithm", “Information Systems and

Computer Networks (ISCON)”, International Conference on, Mathura, 2014.
22. Sanjay Chakrobarty, Prof. N.K.Nagwani,” Analysis and Study of Incremental DBSCAN Clustering Algorithm”, International Journal of

Enterprise Computing and Business,Vol. 1, Issue 2 ,July 2011.
23. Y.-J. Tsay, T.-J. Hsu, and J.-R. Yu, “FIUT: A new method for mining frequent itemsets,” Inf. Sci., vol. 179, no. 11, pp. 1724–1737, 2009.
24. Yu K. and Zhou Y., “Parallel TID-based frequent pattern mining algorithm on a PC cluster and grid computing system”, “Expert Syst. Appl.”,

volume 37,2010.

http://www.ijircce.com

