

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

 (A High Impact Factor, Monthly, Peer Reviewed Journal)

Vol. 4, Issue 1, January 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0401111 502

AMBA 3 AHB LITE PROTOCOL Verification
through an Efficient and Reusable Environment
with an Optimum Assertion and Functional and

Code Coverage in UVM

Pragati Agarwal
M. Tech Student (VLSI), Department of Electrical, Electronics & Communication Engineering, NCU University

(Formerly ITM University), Gurgaon, (Haryana), India

ABSTRACT: Verification is the most integral part of chip manufacturing and testing and is as important as the
designing. Verification provides with the actual implementation and functionality of a Design under Test (DUT) and
checks if it meets the specifications or not. In this paper, an AMBA 3 AHB LITE protocol has been verified as per
the design specifications. The environment so created completely wraps the design under verification and observes
an optimum functional, code and assertion based coverage. The coverage so obtained is 92.59% assertion based
coverage, 100% functional coverage and 94.9% Code Coverage using UVM. The total coverage so obtained is 96.42%.

KEYWORDS: Assertions; Coverage; Environment; Driver; Randomization; UVM; Sequencer; Monitor; Agent

I. INTRODUCTION

 Verification being a very important part of the industry is a very tedious job and hence requires a lot of efforts to reach
a successful outcome. With time, verification methodologies have evolved from the oldest one being the advisor in the
2000 to the latest UVM in the 2013. UVM methodology is a standard methodology mentioned in Accellera and created
by the efforts of Synopsys, Cadence and Mentor Graphics in the year 2013. One of the key features of UVM includes
code reusability in where common parts of code are abstracted out in modules and are included in the library. These
modules can then be easily used by some standard syntax and by merely including the name of the library. UVM hence,
helps in reducing the efforts of a verification engineer and hence reduces the overall time to verify a chip. With
increasing complexity of the input constraints and the need for better control of the statistical distribution, imperative
test benches are being replaced by more declarative specification methods using languages such as UVM [1].

A. Need of Verification
 Exponentially increasing complexity of chips particularly SOCs made verification more challenging. Major
portion of development time (~70%) of a complex SOC is spent on verification. Reducing verification effort or time
spent on verification has a strong impact on Time-to-Market (TTM). In order to satisfy such growing complex
verification needs powerful verification languages and verification methodologies are employed [2].
 In general IP Verification requires in depth verification with coverage based and constraint random simulation
technique, which needs an advanced test bench equipped with various components such as coverage monitors and
sequencers. But if an IP was fully verified before and has a minor design change, it is not necessary to verify all features
in detail. A few directed cases and simple checkers might be sufficient [3].
 Except for simple cases, the behavioral specification of hardware designs is mostly incomplete, leaving the design’s
response to many input stimuli undefined. During verification, unspecified inputs must be excluded from examination to
avoid undetermined or spurious erroneous behavior. In a simulation- based verification setting, the concept of a “test
bench” is applied to specify valid input sequences as well as the expected design responses for them [4].

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

 (A High Impact Factor, Monthly, Peer Reviewed Journal)

Vol. 4, Issue 1, January 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0401111 503

B. UVM features
 UVM provides a method of testbench i.e. how to use the SystemVerilog tools to create effective, reusable and
scalable testbenches. UVM provides base class libraries and macros that are open source and are supported by many
vendors. UVM provides many features to develop a reusable test environment. The component hierarchy provides a
basic skeleton for the testbench. UVM testbench has a number of class objects that are connected hierarchically. The
top is a component that is created by UVM. Top module consists of test and DUT. The test object instantiates the
environment and configures the environment for a particular test. There may be multiple tests, each of which
configures the environment for that particular test. The environment has one or more agents. Agents have the
verification components that generate stimulus to the DUT and monitor the DUT behavior. One agent may have
sequencer, driver and the other agent may have monitor, checker and scoreboard etc. So the basic structure of all
verification environments is fixed and it increases reusability of the environment. In UVM there are many options of
reporting a message. The user can specify actions based on message verbosity and severity. UVM provides a
configuration database that is a common area for storing the values and user can retrieve it from the same area when
needed. Transaction Level Modelling (TLM) makes transfer of information from a producer to consumer by a task or
function. There are three ways of data transfer between components. Producer (initiator in this scenario) pushes data to
consumer (Target in this scenario) using TLM PUT port. Consumer (initiator in this scenario) pulls data directly from
producer (Target in this scenario) using TLM GET port. Producer and consumer both are initiator and uses a FIFO as a
target. In UVM factory methods are used to change the type of object at the run time. In addition to infrastructure
features UVM provides communication channels for analysis that observe the activities in DUT and record it, make
determinations and provide feedback for coverage analysis. Analysis components are like monitor, coverage collector,
scoreboard etc. The most important is that, generation of tests is independent of the environment that makes the
behavior separate from structure. User wants to be able to change the entire transaction dynamically i.e. at the run time
without changing the environment.

E. Benefits of UVM
 UVM uses Transaction Level interfaces for connecting verification components in the environment and provides
added features using which objects in the environment can be modified during the run time. Building the test bench
environment using UVM have many advantages like reusability, lesser time to build testbenches, better synchronization
among verification components, better simulation statistics, simple debugging of code and the most important same test
bench architecture and run phases. Benefits of UVM are visualized in Figure 1. An environment prepared using UVM
give better performance in terms of memory usage and CPU time. UVM provides much more robust debugging
facilities as messages reporting can be done with its severity level, category and verbosity level [7]. So message
reporting can be done in a managed way. Moreover the verification components and methods are modular and can be
reused across different designs and even across different design teams. UVM also provides TLM ports those can be
parameterized to the type of transaction to synchronize the communication among components [7]. The most important
of UVM is that it has a well defined testbench structure and topology that can’t be changed. This standardization of
testbench structure makes the environment more reusable from project to project. The execution flow of testbench is
determined by built in phases and sub phases those make execution order fixed during simulation.

Fig. 1. Benefits of UVM

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

 (A High Impact Factor, Monthly, Peer Reviewed Journal)

Vol. 4, Issue 1, January 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0401111 504

 One of the major advantages of UVM is that the modules are reusable and the work flow is common. If every
verification engineer had his own way of verifying a component, then it would become very difficult for anyone to
understand each and every method. The reason being, everyone would have created a block level testbench with their
own unique style. Hence, there was a need to come up with a common platform which would be easier to understand,
and could be used by anyone without investing a huge amount of time. The other major advantage of using a common
methodology is to increase productivity. This is because, if we have a common platform then using a common set of
templates is ensured which in turn helps in maintaining consistency. Also, major simulators support UVM and it is an
Accellera standard [8].

II. RELATED WORK

 UVM was announced by The Accellera Systems Initiative on December 23rd, 2009 and its first version was
approved on February 18th, 2011. UVM as compared to simple SystemVerilog offers a single standard, industry-wide
solution to the challenges of design verification. The reason being , it has a large number of libraries that are reused at a
large number of places inside the code while creating a VIP. The history of methodologies and innovations on which
the UVM is built is given by the timeline given below in Fig. 2.

aAdvisor1 eRM1 URM1 OVM1,3 UVM1,2,3 UVM-1.1a,b,c,d1,2,,3
20002002 2007 2008 20102011-2013

 Contributions From:
 2003 2006 1Cadence
 RVM2 AVM3 2Synopsys

 VMM2 3Mentor

Fig. 2. Verification Methodology Timeline [10]

III. DUT- AMBA 3 AHB LITE PROTOCOL

A. Design Considerations:
 High clock frequency.
 Burst Transfers.
 High Bandwidth Operation.
 Non Tri-state Implementation.
 Wide Data Bus Configuration 64, 128, 256, 512, and 1024 bits.
 Single Clock Edge Operation.
 High Performance.

B. Description of DUT:
 It has a single master AHB-LITE system design with one AHB-LITE master and three AHB-LITE slaves. The bus
interconnect logic consists of one address decoder and a slave-to-master multiplexor. The decoder monitors the address
from the master so that the appropriate slave is selected and the multiplexor routes the corresponding slave output data
back to the master.
The main component types of an AHB-LITE system are described in:
• Master
• Slave
• Decoder
• Multiplexor

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

 (A High Impact Factor, Monthly, Peer Reviewed Journal)

Vol. 4, Issue 1, January 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0401111 505

Fig. 3. ARCHITECTURE OF AMBA 3 AHB LITE PROTOCOL

IV. UVM TESTBENCH ARCHITECTURE

 In order to understand the verification environments, we must first understand the architecture in a broader view.
The architecture is composed of various components that are integrated in a proper manner to form the required VIP.
These components include a sequencer, sequence item, driver, monitor, collector, agent, scoreboard and a DUT
(Design Under Test). These components can be connected to each other as seen below in Fig. 4.

Fig. 4. UVM Testbench Architecture[8]

 UVM Components
 A few of the components used in the UVM are given as under:

A. Driver
 It is one of the components that is used while creating a VIP. The driver requests for signals or data transactions
from the sequencer. These transactions are then processed in the run phase and then sent to the DUT via an interface for
verifying it. Any basic driver that we create is extended from the base class named as uvm_driver which is a
parameterized class with REQ (Request) and RES (Response) as its two parameters. These parameters are of type
sequence_item which is in fact a transaction. Here, we may also include pipelining where a number of parallel stages
are considered. At first, we declare a virtual interface which is used for communicating with the design under
verification, and then other phases are included such as the run_phase et. al.

B. Sequencers and Sequences
 It is a component which is used to generate random sequences that are further needed to verify the DUT. This
component contains sequence items that are collectively used to generate sequences. The sequences generated by the
sequencer are sent to the driver with the help of port and export mechanism. The connection between sequencer and

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

 (A High Impact Factor, Monthly, Peer Reviewed Journal)

Vol. 4, Issue 1, January 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0401111 506

driver is shown in Fig. 5. as below:

Fig. 5. Connection of Sequencer and Driver [8]

 These sequence items are created by putting a lot of constraints that are required in order to generate the needed
transactions for verifying the DUT.

C. Monitor
 It is not an active component and performs two functions; one is performing verification and the other is to collect
transactions from the interface and thereby performing checking and hence coverage. Here, sampling of transactions
are done and then these transactions are then written to the analysis port. The coding part is almost similar to the driver.

D. Agents
 These components could either be active or passive, and are used as a container that is used for instantiating the
driver, sequencer and monitor. When the agent is in active mode, the above three components namely driver, sequencer
and the monitor are created, while in the passive mode it only creates the monitor. The complete environment is built
by integrating these components in a proper required fashion.

V. COMPILATION IN UVM

 In order to understand the architecture, we must first learn about the various phases of UVM. These are:

– the build_phase: this is the top level phase which is used to build all the components required inside the UVM
environments
– the connect_phase: it is followed by the build_phase where the created components are connected to each other.
Analysis port and export may be used here.
– the end_of_elaboration_phase: post elaboration activities are placed here. For example, we can print topology
information.
– the start_of_simulation_phase: here, the created components are initialized.
– the run_phase: this phase is like a task which consumes some time.
– the extract, check and report_phase: these are the phases that is executed at the end [8].

VI. DESIGN SIMULATION

A. Randomization
 Random testing is more effective than a traditional approach of directed testing. One can easily create tests
that can find hard-to-reach corner cases, by specifying constraints. UVM allows users to specify constraints in a more
compact and declarative way. The constraints are then processed by a solver that generates random values
that meet the constraints [5].

B. Output Waveform :
 The output waveform as shown in Fig. 6., displays all the signals being generated by the DUT. The internal
registers are also seen to be crunching data and displaying corresponding outputs through AMBA 3 AHB LITE signals.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

 (A High Impact Factor, Monthly, Peer Reviewed Journal)

Vol. 4, Issue 1, January 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0401111 507

Fig. 6. Output Waveform of AMBA 3 AHB LITE Protocol

C. Coverage
1) Code Coverage Report

Fig.
7. Code Coverage report

2) Assertion Coverage
 Assertions are mechanism or tool used by HDL’s (VHDL and Verilog) to detect a design’s expected
behavior. The assertion fails if a property that is being checked for in a simulation does not behave the way we
expect it to or we can say that, the assertion fails if a property that is forbidden from happening in a design happens
during simulation. It helps capturing the designer’s interpretation of the specification [5]. The assertion coverage
based on randomization function assertion is shown in figure 8.

3) Total Coverage Percentage
 Total coverage here (Fig. 8.) includes both the assertion based coverage and the functional coverage. The
functional coverage is based on the cover points of the corresponding cover group. Bins have been
created and have been hit properly to generate functional coverage.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

 (A High Impact Factor, Monthly, Peer Reviewed Journal)

Vol. 4, Issue 1, January 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0401111 508

Fig. 8. Coverage report including functional and assertion based coverage

VII. CONCLUSION AND FUTURE WORK

 The code for environment has been simulated. The outputs from DUT have been observed. Environment contains the
instances or the objects of the driver, monitor, sequencer, agent, comparator, package and the DUT. The task performed
by the monitor, driver and sequencer, agent is called along with the mailboxes which contain the received and sent
information in the form of randomized packets. The mailbox implemented to carry the packets shows results after every
transaction. The environment so created completely wraps the design under verification and observes an optimum
functional, code and assertion based coverage. Bins have been created based on the constraints and 100% functional
coverage has been obtained on them. The coverage so obtained is 92.59% assertion based coverage , 94.9% code
coverage and 100% functional coverage using UVM. The total coverage so obtained is 96.42%.

REFERENCES

1. Sutherland S, Davidmann S, Flake P, “SystemVerilog for Design: A Guide to Using SystemVerilog for Hardware Design and
Modeling,” Norwell, MA: Kluwer Academic Publishers, 2003

2. SudhishNaveen, BR Raghavendra, YagainHarish, "An Efficient Method for Using Transaction Level Assertions in a Class Based
Verification Environment," International Symposium on Electronic System Design,pp.72-76, 2011

3. Yun Young-Nam, Kim Jae-Beom, Kim Nam-Do, Min Byeong, “Beyond UVM for practical SoC verification,” SoC Design Conference
(ISOCC), pp. 158 – 162, Nov 2011.

4. Welp Tobias, Kitchen Nathan, and Kuehlmann Andreas, “Hardware Acceleration for Constraint Solving for Random Simulation,”IEEE
Transactions On Computer-Aided Design of Integrated Circuits And Systems, vol-31, No. 5, May 2012

5. http://www.systemverilog.in/systemverilog_introduction.php
6. Ahlawat Deepika, Shukla Neeraj Kr., "DUT Verification Through an Efficient and Reusable Environment with Optimum Assertion and

Functional Coverage in System Verilog", International Journal of Advanced Computer Science and Applications, Vol. 5, No. 4, 2014
7. Nangia Rakhi, Shukla Neeraj K., “Functional Verification of I2C Core using SystemVerilog,” International Journal of Engineering, Science and

Technology (IJEST), 2014,Vol.6, No.4, pp.31-44.
8. Vanessa R. Cooper, “Getting Started with UVM,” First Edition, Austin, USA, © 2013, 2012 Verilab, Inc. - http://www.verilab.com
9. Nangia Rakhi, Shukla Neeraj Kr., Srinath Nate, "Roles and Responsibilities of Verification Languages, Verification Methodologies and

Verification Toolsfor Design Verification of a DUT", JOURNAL OF VLSI DESIGN TOOLS & TECHNOLOGY, VOL 5, NO 3(2015)
10. Kathleen A Meade and Sharon Rosenberg, “A Practical Guide to Adopting the Universal Verification Methodology (UVM),” Second Edition
11. http://www.eecs.umich.edu/courses/eecs373/readings/ARM_IHI0033A_AMBA_AHB-Lite_SPEC.pdf
12. N.Karthik, M.Gurunadha Babu and Ms. Muni Praveena Rela, "Assertion Based Verification of AMBA AHB Using System

Verilog"International Journal and Magazine of Engineering, Technology, Management and Research, ISSN No: 2348-4845, Volume No: 2
(2015), Issue No: 7 (July)

BIOGRAPHY

Pragati Agarwal, pursuing her Master of Technology (M.Tech) in VLSI Design at NCU University (Formerly ITM
University), Gurgaon. Her interest includes VLSI Verification of DUT, Digital Design, ASIC Design, VLSI
Testing, Low-Power Digital VLSI Design and its Multimedia Applications, Digital Hardware Design, Open Source
EDA, Scripting and their role in VLSI Design, RTL Design and FPGA prototyping.

http://www.systemverilog.in/systemverilog_introduction.php
http://www.verilab.com
http://www.eecs.umich.edu/courses/eecs373/readings/ARM_IHI0033A_AMBA_AHB-Lite_SPEC.pdf

