

 ISSN(Online): 2320 - 9801
 ISSN (Print) : 2320 - 9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 6, June 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0406034 10462

Design of low Power Application specific ALU
SumitKumar1, Jasbir Kaur2

P.G. Research Scholar, Dept. of Electronics and Communication, PEC University of Technology, Chandigarh, India1

Assistant Professor, Dept. of Electronics and Communication, PEC University of Technology, Chandigarh, India2

ABSTRACT: In this paper an 8 bit ALU IS designed and its various parameter are optimized in terms of Speed, Power
Consumption and Chip Area are optimized. ALU is firstly designed in Verilog language and then synthesized on Xilinx
ISE simulator and cadence RTL schematic respectively. The key parameters to design any digital system are their logic
delay, power consumption and chip area. Since different applications require the different optimization parameter. So
choice of each module is determined by the type of application. Different logic families are used in the design for
various logic modules. Further detailed analysis of various multiplier, adder and logic circuit is carried out in this
paper.

KEYWORDS: Selection Multiplier, Adder, Logic operation, bitwise operation,ALU

I. INTRODUCTION
The main module of the Central Processing unit isArithmetic Logic Unit. It performs various arithmetic operations

like addition, subtraction multiplication and division of two numbers and logical and bitwise operations such asOR,
AND, INVERT, XOR and other Boolean functions. Conventional adder circuit is one of the basic units in an ALU to
perform the arithmetic operations. A description of quaternary adder is also given which is also used for arithmetic
operation but it uses the number in quaternary form.Multiplier circuit is the most important module as the performance
of the system is determined by the performance of multiplier so detailed analysis of different multiplier i.e Array
multiplier, Wallace multiplier, radix-2 multiplier, radix-4 multiplier and conventional multiplier is given in this paper.
According to the system specification desired multiplier is selected from ALU. Some constraints of system
specification are chip area, speed and the power consumption etc. for example if we have to select a multiplier based
on area and power consumption then array multiplier is best suited multiplier from ALU. Some logical operator like
logical AND or logical OR is also provided in the ALU. Similarly if we have to use bitwise operator, we can easily
select from ALU. All these internal circuits are firstly designed in Verilog and then synthesised in Xilinx ISE simulator
and cadence RTL schematic. Detailed analysis of internal element of ALU is given below.

II. SELECTION IN ADDERS

Adder is to add two numbers i.e X and Y. in this designed ALU we select either the conventional adder or the QFA
adder.
1. Conventional adder:

The conventional adder circuit is simply a ripple carry adder implemented using cascaded full adders. Each full
adder adds three single bits giving one bit sum and a carry bit as outputs in binary logic.

2. QFA Adder:
This is a multivalued logic adder having input in multivalued format and is used for addition. For high number of bits
of input, this multiplier is used as it is having optimized parameter like less power consumption, less delay etc. To add
two numbers by QFA adder in ALU, we simply provide the value to select line N equal to two shown in the part of
Verilog code. RTL schematic of QFA adder is shown in figure 1.

 ISSN(Online): 2320 - 9801
 ISSN (Print) : 2320 - 9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 6, June 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0406034 10463

Figure 1 RTL Schematic of QFA ADDER

III. SELECTION IN MULTIPLIERS
1. Array Multiplier:
Array multiplier was used initially to multiply two numbers. To multiply two numbers using Array multiplier we firstly
make bitwise anding to generate partial products of two number, partial products obtained from bitwise anding is
either the multiplicand shifted by a particular amount when multiplier bit is one or 0 when multiplier bit is 0. These
partial products are then added with the help of Ripple adders. Array multiplier in this paper is designed with the help
of Verilog programming language and then output result is verified by using cadence RTL schematic. Array multiplier
is a part of ALU. To multiply two numbers by array multiplier in ALU, we simply select the array multiplier by
providing select line a value equal to 3. Figure 2 shows a 4*4 unsigned array multiplier synthesized in cadence RTL
schematic using Verilog language.

Figure 2 RTL schematic of 4*4 Array multiplier

 ISSN(Online): 2320 - 9801
 ISSN (Print) : 2320 - 9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 6, June 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0406034 10464

2. Radix-2 Multiplier :
This multiplier was initially developed by O. L. Macsorley in 1961 for speeding up multiplication in Early

computers by reducing number of partial product by a factor of two. This multiplier uses a booth table from which a
binary number is recoded according to booth algorithm. This multiplier was initially designed for high bit parallel
multiplier as for low bit for multiplier array multiplier was also efficient. The drawbacks of radix-2 multipliers is that
number of add subtract operations and the number of shift operations becomes variable and becomes inconvenient in
designing parallel multipliers and algorithm becomes inefficient when there are isolated 1’s. To multiply two number
by radix-2 multiplier in ALU, we simply provide the value to select line n equal to four. Technology schematic of
radix-4 booth multiplier is shown in figure 3.

Figure 3 Technology Schematic of radix2 multiplier
3. Radix-4 Multipliers:
Problems of Radix-2 booth multiplier can be overcome by radix-4 multiplier. Radix-4 booth multipliers recode three
bits at a time which results into decrease of partial products by a factor of three. Recoding method of radix-4
multiplier is similar to radix-2 booth multiplier i.e we have to recode multiplier according to radix-4 booth table and
then implement radix-4 algorithm. The radix-4 algorithm is designed in Verilog language and then synthesized in
cadence RTL schematic. An example is given to multiply two number by radix-4 multiplier. Let the two numbers to be
multiplied are X = 18 and Y = -15. To multiply two number by radix-4 multiplier in ALU, we simply provide the value
of select line N equal to five.

 ISSN(Online): 2320 - 9801
 ISSN (Print) : 2320 - 9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 6, June 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0406034 10465

TABLE 1. Radix-4 Booth Multiplier Example

 0 0 0 1 0 0 1 0 18

 1 1 1 1 0 0 0 1 -15

 0 0 0 0 0 1 0 0 1 0 PP1

 0 0 0 0 0 0 0 1 0 0 1 0 PP2

 1 1 1 1 1 0 1 1 1 1 0 0 1 0 PP3

1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 PP4

1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 -270

4. Wallace multiplier:

Various algorithm and techniques have been designed in past with objective of improving the speed of the parallel
multiplier. Wallace Tree multiplier is a very good technique to improve the speed of parallel multiplier. In Wallace tree
architecture, instead of adding the partial product in ripple fashion all the bits of all of the partial products in each
column are added together by a set of counters in parallel without propagating any carries. At the last stage of Wallace
multiplier a fast adder is used at the end to produce the final result. Since the addition of partial products now becomes
0 (IogN) the speed of Wallace multiplier greatly improves. If we design an ALU considering only multiplier then
technology schematic of the ALU is shown in the figure 4.

Figure 4 Technology Schematic of selection of multiplier in ALU

IV. LOGICAL OPERATION
Logical operation includes logical operatorsi.e logical-AND, logical-OR and logical-NOT. Logical operators always

evaluate to l-bit value. If resultant expression is equal to zero, then output bit is equivalent to a logical o (false
condition). If the resultant expression is not equal to zero, then the resultant value is equivalent to a logical 1 (true
condition). If any operand bit is X or Z, then resultant expression is equivalent to X (ambiguous condition) and is
normally treated by simulators as a false condition. Example for different logical operation is given below:
 Suppose A = 2; B = 0;

A && B (Logical-and) Expression evaluates to 0. Equivalent to (logical-1 && logical-0)
A || B (Logical-or) Expression evaluates to 1. Equivalent to (logical-l || logical-0)

 ISSN(Online): 2320 - 9801
 ISSN (Print) : 2320 - 9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 6, June 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0406034 10466

! A (Logical-not) Expression evaluates to 0.
! B (Logical-not) Expression evaluates to 1.

V. BITWISE OPERATION
In bitwise operation, bitwise operators perform a bit-by-bit operation on two operands. They take each bit in one

operand and perform the operation with the corresponding bit in the other operand and if one of the operand is shorter
than the other, then that operand will be bit extended with zeros to match the length of the other operand. Example for
different Bitwise operation is given below:

Let X=4’b1010, Y=4’b1101
~X // Bitwise Negation. Output Result is 4'b0101.
 X & Y // Bitwise and. Output Result is 4'b1000.

 X | Y // Bitwise or. Output Result is 4'b1111.
 X^Y // Bitwise xor. Output Result is 4'b0111.

VI. RESULTS
From the individual simulation of all the circuit on RTL schematic we find out that for low bit of inputs,

conventional adder is an optimized circuit for addition while for high bit of numbers we use QFA adder as it is having
optimized parameter for higher bit numbers. Table 2 represents different parameter of all the multiplier discussed in
this paper. From these parameter we can easily select required multiplier according to application by providing specific
value to select line.

Table 2 Comparison of different 4*4 multiplier

S.no Multiplier Delay(ns) AREA Power

Consumption(uW)

Area-Delay

Product(AD)

Area-Power

Product(AP)

1 Array

Multiplier

1.791 78 1.369 139.698 106.782

2 Radix-2 booth

multiplier

1.744 158 2.555 275.552 402.9

2 Radix-4 booth

multiplier

.779 96 1.18 74.78

113.28

4 Wallace

Multiplier

1.517 87 1.573 131.97 136.851

5 Conventional

Multiplier

0.992 85 1.453 84.32 122.51

A part of the Verilog program of ALU showing how to select one of the parameter using select line N is given
below:

 ISSN(Online): 2320 - 9801
 ISSN (Print) : 2320 - 9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 6, June 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0406034 10467

case(N)

1: conventional_adderc1(A,B,CIN,SUM,COUT);
2: QFA q1(A,B,CIN,SUM,COUT);
3: arraymul a1(X,Y,Product);
4: radix2 r1(X,Y,Product);
5: radix4 r2(X,Y,Product);
6: wallace w1(X,Y,Product);
7: simplemul s1(X,Y,Product);
8: LOGICOR L1 (X,Y,LOGICOP);
9: LOGICAND L4 (X,Y,LOGICOP);
10: BITWISEOR B1 (X,Y,LOGICOP);
11: BITWISEAND B2 (X,Y,LOGICOP);
12: BITWISEXOR L3 (X,Y,LOGICOP);

endcase

VII. CONCLUSION

In this Paper, An 8-bit arithmetic logic unit with 16 functions is designed in Verilog and the design is validated in

Xilinx ISE simulator and cadence RTL schematic respectively. The 8-bit ALU design consists of different adder
configuration to add, multiplier configuration to multiply and different operators. Different logic families are preferred
for different application. For less number of bit of input, we select conventional adder in ALU as it provide optimum
result but for higher number of input we select QFA as default adder, for multiplication, we select the multiplier
depending on application. If application requires less area then we select array multiplier as a default multiplier. But if
we require optimization in all parameter, then we select radix-4 multiplier as a default multiplier. Different operator
like logical operator, bitwise operator is also provided in ALU. To choose any operator we have to provide
corresponding value to select line. The selection of adder and multiplier algorithm helps the designer to select
according to the area, power and delay parameter.

 REFERENCES

1. R. D. Blanton and J. P. Hayes,’Design of a Fast, Easily Testable ALU’, IEEE Conference Publications, pp. 9-16, 1996.
2. Yu Zhou and HuiGuo,’ Application Specific Low Power ALU Design’, IEEE Conference Publications, Vol. 1, pp. 214 - 220, Aug. 2008.
3. Na Gong, Jinhui Wang and RamalingamSridhar,’Application-driven power efficient ALU design methodology for modern

microprocessors’, IEEE Conference Publications, pp.184 - 188, 2013.
4. L. Gopal, N. SyahiraMohdMahayadin, A.K Chowdhury, A.A Gopalai and A. Kumar Singh,’Design and synthesis of reversible arithmetic

and Logic Unit (ALU)’, IEEE Conference Publications, pp. 289 – 293, September 2014.
5. A. G. Rao and A. K. D. Dwivedi,’Design of Multifunctional DR Gate and Its Application in ALU Design’, International Conference on

Information Technology, pp.339 - 344, December 2014.
6. N. Ravindran and R. M. Lourd,’An optimum VLSI design of a 16-BIT ALU’,International Conference on Information and

Communication Technology Research, pp. 52-55, May 2015.
7. N.Agrawal, M. Agarwal, S.Singh, A.Kumar and B.Pandey,’Different I/O standard based Wi-Fi enable 32-bit ALU design on 90nm

FPGA. Communication’, Control and Intelligent Systems, IEEE Conference Publications, pp. 382 - 389, November 2015.
8. J.Kaur, P.Sapra,’Multi Valued Logic Based Design of Quaternary Adders in VHDL’, International Journal of Innovative Research in

Science, Engineering and Technology, pp. 1443-1448,Feburaray 2016.

