

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 5, May 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018.0605031 5249

Enhanced XSS/SQL Injection Techniques for
Web Site Vulnerabilities with Amplified

Algorithm

Rashmi1, Deepika Goyal2
M. Tech. Student, Department of Computer Science & Engineering, Advance Institute of Technology and Management

at Palwal, Haryana, India1

Assistant Professor, Department of Computer Science & Engineering, Advance Institute of Technology and

Management at Palwal, Haryana, India2

ABSTRACT: These days, the biggest threat to an organization’s network security comes from its public Web site and
the Web-based applications found there. Unlike internal-only network services such as databases—which can be sealed
off from the outside via firewalls—a public Web site is generally accessible to anyone who wants to view it, making
application security an issue. As networks have become more secure, vulnerabilities in Web applications have
inevitably attracted the attention of hackers, both criminal and recreational, who have devised techniques to exploit
these holes. In fact, attacks upon the Web application layer now exceed those conducted at the network level, and can
have consequences which are just as damaging. Consequently, under the scheme we proposed Enhanced Counter
Measure for Web Site Vulnerabilities with Amplified Algorithm to intrude and get vital and confidential information
from the web site and web application prone to attacks and weak to protect its nitty-gritty.

KEYWORDS: Web Security, Cross Site Scripting, Sql Injection, Web Site Vulnerabilities.

I. INTRODUCTION

With XSS, every input has the potential to be an attack vector, which does not occur with other vulnerability types.

This leaves more opportunity for a single mistake to occur in a program that otherwise protects the web application
against XSS. SQL injection also has many potential attack vectors. Despite the popular opinion that XSS is easily
prevented, it has many subtleties and variants. Even solid applications can have flaws in them; consider non-standard
browser behavior that tries to ‘fix’ the malformed HTML, which might slip by a filter that uses regular expressions.
Finally, until early 2006, the PHP interpreter had a vulnerability in which it did not quote error messages, but many
researchers only reported the surface-level ‘resultant’ XSS instead of figuring out whether there was a different
‘primary’ vulnerability that led to the error the same is depicted below with description for ready reference:-

Vulnerabilities Description

Cross Site Scripting
(XSS)

XSS flaws occur whenever an application takes user supplied data and sends it to a web
browser without first validating or encoding that content. XSS allows attackers to execute
script in the victim's browser which can hijack user sessions, deface web sites, possibly
introduce worms, etc.

Injection Flaws

Injection flaws, particularly SQL injection, are common in web applications. Injection
occurs when user-supplied data is sent to an interpreter as part of a command or query. The
attacker's hostile data tricks the interpreter into executing unintended commands or changing
data.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 5, May 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018.0605031 5250

Malicious File Execution

Code vulnerable to remote file inclusion (RFI) allows attackers to include hostile code and
data, resulting in devastating attacks, such as total server compromise. Malicious file
execution attacks affect PHP, XML and any framework, which accepts filenames or files
from users.

Cross Site Request
Forgery (CSRF)

A CSRF attack forces a logged-on victim's browser to send a pre-authenticated request to a
vulnerable web application, which then forces the victim's browser to perform a hostile
action to the benefit of the attacker. CSRF can be as powerful as the web application that it
attacks.

 Information Leakage
and Improper Error

Handling

Applications can unintentionally leak information about their configuration, internal
workings, or violate privacy through a variety of application problems. Attackers use this
weakness to steal sensitive data, or conduct more serious attacks.

 Broken Authentication
and Session
Management

Account credentials and session tokens are often not properly protected. Attackers
compromise passwords, keys, or authentication tokens to assume other users' identities.

Insecure Cryptographic
Storage

Web applications rarely use cryptographic functions properly to protect data and credentials.
Attackers use weakly protected data to conduct identity theft and other crimes, such as credit
card fraud.

As affirmed previously web application use the database to deliver the required information to its visitors. If web

applications are not secure, i.e., vulnerable to, at least one of the various forms of hacking techniques, then the entire
database of sensitive information is at serious risk. Some hackers, for example, may maliciously inject code within
vulnerable web applications to trick users and redirect them towards Phishing sites. This technique is called Cross-Site
Scripting (XSS) and may be used even though the web servers and database engine contain no vulnerability
themselves. Recent research shows that 80% of cyber attacks are done at the web application level. The figure 1 shows
the hacking attempt.

Figure 1: Depiction of a hacking attempt

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 5, May 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018.0605031 5251

II. RELATED WORK

The usage of Personal Computers, handheld devices and propelled cells has staggeringly extended throughout late

years, as substantiated by Stuttard and Pinto (2011) web applications have been created to perform in every practical
sense every profitable limit you could realize on the web. These fuse Online Shopping, Social Networking, Gambling
and Online club, Banking, Web look for, Auctions, Webmail, and Interactive website pages among others. In a report
dispersed by Whitehat "86% of all destinations attempted by Whitehat Sentinel had no short of what one bona fide lack
of protection, and usually, essentially more than one – 56% to be correct. (Whitehat, 2015)

As showed by Shema (2011), various affiliations rely on modified web applications to realize business shapes. These
may fuse absolute applications, or include modules, for instance, on the web, login pages shopping crates, and diverse
sorts of dynamic substance. A segment of these item applications in your framework could be made in-house.
Likewise, some may be legacy locales with no alloted proprietorship or support. Physically looking at these for
stipulations and arranging their criticalness for remediation can be a staggering task without dealing with attempts and
using robotized gadgets to improve accuracy and profitability.

 Agents are continually responding to requests from both inside and outside the affiliation's corporate framework
using gadgets, for instance, tablets, mobile phones or PCs. While this has tremendous focal points, the negative
drawback is the way that software engineers may misuse accessibility to increment unapproved access to basic
association information. Subsequently, it is essential for any association to ensure that they guarantee their web
applications and reduce the probability of a security break to their electronic structure. Testing the weakness of web
applications with modernized penetration testing instruments conveys by and large lively results. Starting at now, there
are various such gadgets, both business and open source.

III. PROPOSED METHODOLOGY

The proposed scheme starts by the task of code analysis where static analysis is performed first. The static analysis

operates on python source code files where it analyzes every file to determine specified vulnerabilities. The
vulnerabilities are specified by the security rules which behave as the security knowledge for static analysis technique.
Once the static analysis is completed, the next step is to perform the dynamic analysis on the web application. The
dynamic analysis carries out the testing process by the use of instrumentation technique. The instrumentation
(payloads) approach is based on the idea that, the attacks occurring due to the input validation vulnerabilities can be
handled by adding the validation to the source code by determining of instrumentation technique (payloads) of the
original source code with the pre-defined instrumentation templates (payloads). Therefore, the instrumentation code
would perform the validation on the input given at the runtime, as a result of which the attacks would be stopped from
being carried out and also the attempt for an attack can be reported during the web application’s runtime. To do this, an
proposed scheme generates the instrumentation code based on the instrumentation templates that contains the specified
templates for each target vulnerability type. Later on, the proposed scheme also inserts the generated instrumentation
code into the original web application code automatically. For inserting the instrumentation code, the locations are
extracted from the results produced by the static results. As, the instrumented source code, which is actually
combination of the original source code and the instrumentation code, is executed the runtime attacks are formed as
well as reported to the user. The architecture diagram of the proposed scheme is shown in Fig. 1. The operations
performed by the dynamic analysis agent for cross side scripts and sql injections are described in the points below:

1. The list of vulnerabilities is given as an input, along with the predefined instrumentation templates (payloads),
to the instrument code generation agent.

2. The proposed scheme code generation agent generates appropriate instrumentation code (payloads) based on
the vulnerabilities information provided by the vulnerabilities list. This information mainly includes the types of
potential vulnerabilities, the location of vulnerabilities in the source code and the vulnerable method along with the
vulnerable parameter of that method.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 5, May 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018.0605031 5252

Figure 1: Architecture and Flow Diagram for proposed Amplified Algorithm Scheme.

IV. PSEUDO CODE AND SIMULATION RESULTS

Pseudo Code
__product__ = "Generic (Unknown)"
def detect(get_page): retval = False page, _, code = get_page()
if page is None or code >= 400:
return False
for vector in WAF_ATTACK_VECTORS:
page, _, code = get_page(get=vector)
if code >= 400 or IDS_WAF_CHECK_PAYLOAD in vector and code is None: or
if code >= 400:
 retval |= re.search(r"\A__cfduid=", headers.get(HTTP_HEADER.SET_COOKIE, ""), re.I) is not None
 retval |= headers.get("cf-ray") is not None
 retval |= re.search(r"CloudFlare Ray ID:|var CloudFlare=", page or "") is not None
for vector in WAF_ATTACK_VECTORS:
 _, headers, _ = get_page(get=vector)
 retval = re.search(r"ACE XML Gateway", headers.get(HTTP_HEADER.SERVER, ""), re.I) is not None
 if retval:
 break
retval = True
break
return retval

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 5, May 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018.0605031 5253

Figure 2: Vulnerability Exposed using Amplified Cross Script

Machine CPU Time in Seconds

1 (i3 2.0 GHZ) 4.227

2 (i5 2.6 GHZ) 2.343

Table 1: CPU time used to execute the proposed algorithm in seconds using 8GB RAM

Figure 3: Graph Representation of proposed algorithm in seconds using 8GB RAM

0

5

1 2
CPU Time in Seconds 4.227 2.343

4.227
2.343

CPU Time in Seconds

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 5, May 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018.0605031 5254

V. CONCLUSION AND FUTURE WORK

 The web application worldview is as yet advancing. Both JavaScript and HTML are under dynamic improvement.
Web programs as of late executed HTML 5 noteworthy rendition of the dialect. New dialect components, for example,
canvas, and expanded capacities, for example, cross-space HTTP asks for or relentless customer side stockpiling, may
concede the foe new abilities. Thusly, existing and proposed XSS measures must be constantly reexamined whether
regardless they work given the present condition of the innovation. Additionally, the interruption limits may prompt the
improvement of right now XSS Payloads and Sql-Injection assaults besides risk to the web world and with respect to
black hat the measures under scheme is been prepared. Additional future work is to put our new proposed conspire into
a genuine firmware and system correspondence frameworks with to look at the XSS infiltration interruption. Despite
the fact that we have investigated how proposed calculation breaks the entire execution of security frameworks, the
information utilized as a part of our examination is manufactured and may not be illustrative this present reality
situations. In future under the plan can plan to actualize the interruption on secured and solid stockpiling framework
and utilize XSS against the stockpiles and cloud too.

REFERENCES

1. Alssir, F. T., & Ahmed, M. (2012). Web Security Testing Approaches: Comparison Framework. In Proceedings of the 2011 2nd
International Congress on Computer Applications and Computational Science (pp. 163-169). Springer Berlin Heidelberg.

2. Antunes & Vieira (2012). Defending against web application vulnerabilities. Computer, (2), 66-72.
3. Bau, J., Bursztein, E., Gupta, D., & Mitchell, J. (2010). State of the art: Automated black-box web application vulnerability testing. In

Security and Privacy (SP), 2010 IEEE Symposium on (pp. 332-345). IEEE.
4. Chen, S. (2014). wavsep. Available: http://sectooladdict.blogspot.com/2014/02/wavsep-web-application-scanner.html. [Accessed 09 July
 2015.]
5. Dessiatnikoff, A., Akrout, R., Alata, E., Kaaniche, M., & Nicomette, V. (2011). A clustering approach for web vulnerabilities detection.
 InDependable Computing (PRDC), 2011 IEEE 17th Pacific Rim International Symposium on (pp. 194-203). IEEE.
6. Dougherty, C. (2012).Practical Identification of SQL Injection Vulnerabilities. 2012. US-CERT-United States Computer Emergency

Readiness Team. Citado na, 34. . [Accessed: 08th June 2015]
7. Doupe, A., Cova, M., & Vigna, G. (2010). Why Johnny can’t pentest: An analysis of black-box web vulnerability scanners. In Detection

of Intrusions and Malware, and Vulnerability Assessment (pp. 111-131). Springer Berlin Heidelberg. [Accessed: 10th June 2015]
8. Fonseca, J., Vieira, M., & Madeira, H. (2014). Evaluation of Web Security Mechanisms using Vulnerability & Attack Injection.

Dependable and Secure Computing, IEEE Transactions on, 11(5), 440-453.
9. Granville, K . (2015).Nine Recent Cyber-attacks against Big Businesses. New York Times [online] Available from
 http://www.nytimes.com/interactive/2015/02/05/technology/recent-cyberattacks.html?_r=1. [Accessed 08 July 2015.]
10. Howard, M., LeBlanc, D., & Viega, J. (2010). 24 deadly sins of software security [electronic book]: Programming flaws and how to fix

them. New York: McGraw-Hill.
11. Jovanovic, N., Kruegel, C., & Pixy, E. K. (2010). A Static Analysis Tool for Detecting Web Application Vulnerabilities (Short Paper). In
 Proceedings of the 2006 IEEE symposium on Security and Privacy, Washington, DC, IEEE Computer Society (pp. 258-263).
12. Kalman., G. (2014). Ten Most Common Web Security Vulnerabilities.[online] Available from: http://www.toptal.com/security/10-most-
 common-web-security-vulnerabilities [Accessed 08 July 2015.]
13. Kals, S., Kirda, E., Kruegel, C., & Jovanovic, N. (2014). A web vulnerability scanner. In Proceedings of the 15th international conference
on World Wide Web (pp. 247-256). ACM.
14. Khoury, N., Zavarsky, P., Lindskog, D., & Ruhl, R. (2011). Testing and assessing web vulnerability scanners for persistent SQL injection

attacks. In Proceedings of the First International Workshop on Security and Privacy Preserving in e-Societies (pp. 12-18). ACM.
15. McQuade, K. (2014). Open Source Web Vulnerability Scanners: The Cost Effective Choice?. In Proceedings of the Conference for

Information Systems Applied Research ISSN (Vol. 2167, p. 1508). [Accessed: 18th June 2015]

http://www.ijircce.com
http://sectooladdict.blogspot.com/2014/02/wavsep-web-application-scanner.html.
http://www.nytimes.com/interactive/2015/02/05/technology/recent-cyberattacks.html?_r=1.
http://www.toptal.com/security/10-most-

