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ABSTRACT: Incorporation of prior knowledge about organ shape and location is key to improve performance of 
image analysis approaches. In particular, priors can be useful in cases where images are corrupted and contain artefacts 
due to limitations in image acquisition. The highly constrained nature of anatomical objects can be well captured with 
learning based techniques. However, in most recent and promising techniques such as CNN based segmentation it is 
not obvious how to incorporate such prior knowledge. State-of-the-art methods operate as pixel-wise classifiers where 
the training objectives do not incorporate the structure and inter-dependencies of the output. To overcome this 
limitation, we propose a  
generic training strategy that incorporates anatomical prior knowledge into CNNs through a new regularisation model, 
which is trained end-to-end. The new framework encourages models to follow the global anatomical properties of the 
underlying anatomy (e.g. shape, label structure) via learned non-linear representations of the shape. We show that the 
proposed approach can be easily adapted to different analysis tasks (e.g. image enhancement, segmentation) and 
improve the prediction accuracy of the state-of-the-art models. The applicability of our approach is shown on multi-
modal cardiac datasets and public benchmarks. Additionally, we demonstrate how the learned deep models of 3D 
shapes can be interpreted and used as biomarkers for classification of cardiac pathologies 
 

I. INTRODUCTION 
 
This chapter provides basic introduction about digital image processing and segmentation techniques involved in this 
research work. The field of digital image processing refers to processing digital images by means of a digital computer. 
Note that a digital image is composed of a finite number of elements, each of which has a particular location and value. 
These elements are referred to as picture elements, image elements, pels and pixels. Pixel is the term most widely used 
to denote the elements of a digital image. The areas of application of digital image processing are so varied that some 
form of organization is desirable in attempting to capture the breadth of this field. One of the simplest ways to develop 
a basic understanding of the extent of image processing applications is to categorize images according to their source 
(e.g.,visual,X-ray,and so on),Gonzalez et al (2000) comment in their work.  AlZubi et al (2010) comment their work by 
Shadi AlZubi et al (2010) the use of 3D image processing has been increased especially for medical applications; this 
leads to increase the qualified radiologists’ number who navigate, view, analyze, segment, and interpret medical 
images. 
 

II. EXISITNG APPROACH 
 
In the next section, we briefly summarise the state-of-theart methodology for image segmentation (SEG) and 
superresolution (SR), which is based on convolutional neural networks (CNNs). We then present a novel methodology 
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that extends these CNN models with a global training objective to constrain the output space by imposing anatomical 
shape priors. For this, we propose a new regularization network that is based on the T-L architecture which was used in 
computer graphics [19] to 3D render objects from natural images. Medical Image Segmentation With CNN Models Let 
ys = {yi}i∈S be an image of class labels representing different tissue types with yi∈ L = {1, 2,...C}. Furthermore let x = 
{xi ∈R,i∈ S} be the observed intensity image. The aim of image segmentation is to estimate ys having observed x. In 
CNN based segmentation models [22], [29], [38], this task is performed by learning a discriminative function that 
models the underlying conditional probability distribution P(ys|x). The estimation of class densities P( ys|x) consists in 
assigning to each xi the probability of belonging to each of the C classes, yielding C sets of class feature maps fc that 
are extracted through learnt non-linear functions. The final decision for class labels is then made by applying softmax 

to the extracted class feature maps, in the case of crossentropy these 
featuremaps correspond to log likelihood values. As in the U-Net [38] and DeepMedic [22] models, we learnthe 
mapping between intensities and labelsφ(x): X→Lbyoptimising the average cross-entropy loss of each classLx = 
Cc=1L(x,c) using stochastic gradient descent. As shownin Fig. 2, the mapping function φis computed by passingthe 
input image through a series of convolution layers andrectified linear units across different image scales to enlargethe 
model’s receptive field. The presented model is composed of two parts: feature extraction (analysis) similar to aVGG-
Net  and reconstruction(synthesis) as in the case ofa 3D U-Net [38]. However, in contrast to existing approaches,we 
aim for sub-pixel segmentation accuracy by trainingup-sampling layers with high-resolution ground-truth maps.This 
enables 3D analysis of the underlying anatomy in case ofthick slice 2D image stack acquisitions such as cine 
cardiacMR imaging. 

 
 
Block diagram of the stacked convolutional autoencoder (AE) network  (in grey), which is trained with segmentation 
labels. The AE model  is coupled with a predictor network (in blue) to obtain a compact nonlinear  representation that 
can be extracted from both intensity and  segmentation images. The whole model is named as T-L network. 
. 
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Block diagram of the stacked convolutional autoencoder (AE) network (in grey), which is trained with segmentation 
labels. The AE modelis coupled with a predictor network (in blue) to obtain a compact nonlinear representation that 
can be extracted from both intensity andsegmentation images. The whole model is named as T-L network. 
 

III. PROPOSED APPROACH 
 
Each layer output in a convnet is a three-dimensional array of size h×w×d, where h and w are spatial dimensions, and d 
is the feature or channel dimension. The first layer is the image, with pixel size h × w, and d channels. Locations in 
higher layers correspond to the locations in the image they are path-connected to, which are called their receptive 
fields. Convnets are inherently translation invariant. Their basic components (convolution, pooling, and activation 
functions) operate on local input regions, and depend only on relative spatial coordinates. Writing xij for the data 
vector at location (i, j) in a particular layer, and yij for the following layer, these functions compute outputs yij by 

 
where k is called the kernel size, s is the stride or subsampling factor, and fks determines the layer type: a matrix 
multiplication for convolution or average pooling, a spatial max for max pooling, or an elementwise nonlinearity for an 
activation function, and so on for other types of layers. This functional form is maintained under composition, with 
kernel size and stride obeying the transformation rule 

 
While a general net computes a general nonlinear function, a net with only layers of this form computes a nonlinear 
filter, which we call a deep filter or fully convolutional network. An FCN naturally operates on an input of any size, 
and produces an output of corresponding (possibly resampled) spatial dimensions 
A real-valued loss function composed with an FCN defines a task. If the loss function is a sum over the spatial 
dimensions of the final layer, `(x; θ) = P ij ` 0 (xij ; θ), its parameter gradient will be a sum over the parameter gradients 
of each of its spatial components. Thus stochastic gradient descent on ` computed on whole images will be the same as 
stochastic gradient descent on ` 0 , taking all of the final layer receptive fields as a minibatch. When these receptive 
fields overlap significantly, both feedforward computation and backpropagation are much more efficient when 
computed layer-by-layer over an entire image instead of independently patch-by-patch. 
Consider a layer (convolution or pooling) with input stride s, and a subsequent convolution layer with filter weights fij 
(eliding the irrelevant feature dimensions). Setting the earlier layer’s input stride to one upsamples its output by a factor 
of s. However, convolving the original filter with the upsampled output does not produce the same result as shift-and-
stitch, because the original filter only sees a reduced portion of its (now upsampled) input. To produce the same result, 
dilate (or “rarefy”) the filter by forming 

.  
(with i and j zero-based). Reproducing the full net output of shift-and-stitch involves repeating this filter enlargement 
layer-by-layer until all subsampling is removed. (In practice, this can be done efficiently by processing subsampled 
versions of the upsampled input.) Simply decreasing subsampling within a net is a tradeoff: the filters see finer 
information, but have smaller receptive fields and take longer to compute. This dilation trick is another kind of 
tradeoff: the output is denser without decreasing the receptive field sizes of the filters, but the filters are prohibited 
from accessing information at a finer scale than their original design. Although we have done preliminary experiments 
with dilation, we do not use it in our model. We find learning through upsampling, as described in the next section, to 
be effective and efficient, especially when combined with the skip layer fusion described later on. For further detail 
regarding dilation, refer to the dilated FCN 
We define a skip architecture to extend FCN-VGG16 to a three-stream net with eight pixel stride shown in Figure 3. 
Adding a skip from pool4 halves the stride by scoring from this stride sixteen layer. The 2× interpolation layer of the 
skip is initialized to bilinear interpolation, but is not fixed so that it can be learned as described in Section 3.3. We call 
this twostream net FCN-16s, and likewise define FCN-8s by adding a further skip from pool3 to make stride eight 
predictions. (Note that predicting at stride eight does not significantly limit the maximum achievable mean IU; see 
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Section 6.3.) We experiment with both staged training and all-at-once training. In the staged version, we learn the 
single-stream FCN-32s, then upgrade to the two-stream FCN-16s and continue learning, and finally upgrade to the 
three-stream FCN-8s and finish learning. At each stage the net is learned end-to-end, initialized with the parameters of 
the earlier net. The learning rate is dropped 100× from FCN-32s to FCN- 16s and 100× more from FCN-16s to FCN-
8s, which we found to be necessary for continued improvements 
We fine-tune all layers by backpropagation through the whole net. Fine-tuning the output classifier alone yields only 
73% of the full fine-tuning performance as compared in Table 3. Fine-tuning in stages takes 36 hours on a single GPU. 
Learning FCN-8s all-at-once takes half the time to reach comparable accuracy. Training from scratch gives 
substantially lower accuracy. 
 

IV. RESULT 
 

 
 

V. CONCLUSION 
 
We propose a method of segmentation with improved fcn alexnet propagation that is based on originally designed 
neural networks. By taking the contextual input into account, the spatial consistency of segmentation is enforced. Also, 
we conduct thorough and unprecedented testing to evaluate the generalization ability of our model and achieve 
performance better than or comparable to the state-of-the-art. Furthermore, With this new training  objective, at testing 
time NNs make predictions that are in  agreement with the learnt shape models of the underlying anatomy, which are 
referred as image priors 
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