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ABSTRACT: In today’s business world the dataset plays a very important role. With the increase in the industries 
even there is an increase in the dataset so this will lead to the data duplication. Here we come up with solution called 
the data duplicate detection i.e.  By using the technique called progressive duplicate detection.  We present two novel, 
progressive duplicate detection algorithms which significantly increases the efficiency of finding the duplicate data 
when the execution time is limited. Here we get the quality data without any disturbance to the datasets. Duplicate 
detection is the process of removing replica in the repository. These algorithm dynamically adjusts behaviour by 
choosing parameters e.g. window size, block size etc. Comprehensive experiments show that our progressive 
algorithms can double the efficiency over time of traditional duplicate detection and significantly improve upon related 
work. 
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I. INTRODUCTION 
 
The data duplication is one of the critical issues in the data mining. Many industries will look for the accurate data 

to carry out their operations. Therefore the data quality must be significant. With the increase in the volume of  data  
even the data quality problems  arise. Multiple, yet different of the same real-world objects in data, duplicates, are one 
of the most intriguing data quality problems. Several representations generally are not same and have certain 
differences like misspelling, missing values, changed addresses, etc. which makes the detection of duplicates very 
difficult. The detection of duplicates is very costly because the comparison among all possible duplicate pairs is 
required. For example in particular Online retailers, offer huge catalogues comprising a constantly growing set of items 
from many different suppliers. As independent persons change the product portfolio, duplicates arise. While there is an 
obvious need for duplication, online shops without downtime cannot give traditional duplication. 

 
Data has to be in integrity, if it exceeds the criteria, it is a duplicate. But due to data changes and sloppy data entry, 

errors such as duplicate entries might occur, making data cleaning and in particular duplicate detection indispensable A 
user has little knowledge about the given data but still needs to configure the cleansing process. When user has only 
limited, maybe unknown time for data cleansing and wants to make best possible use of it. Then, simply start the 
algorithm and terminate it when needed. The result size will be maximized. 

 
In this work, however, we focus on progressive algorithms, which try to report most matches early on, while the 

possibility of  slight increase in their overall runtime. To achieve this, they need to estimate the similarity of all 
comparison candidates in order to compare most promising record pairs first. Progressive duplicate detection identifies 
most duplicate pairs early in the detection process. Instead of reducing the overall time needed to finish the entire 
process, progressive approaches try to reduce the average time after which a duplicate is found. Then early termination, 
in particular, then yields more completes results on a progressive algorithm than on any traditional approach. 

 
We propose two novel progressive duplicate detection algorithms namely: 

1) Progressive sorted neighborhood method (PSNM), which performs best on small and almost clean 
datasets. 
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2) Progressive blocking (PB), which performs best on large and very dirty datasets. 
 

Both enhance the efficiency of duplicate detection even on very large datasets. As we  propose two dynamic 
progressive duplicate detection algorithms, PSNM and PB, which expose different strengths and outperform current 
approaches. 

 
 Some of the advantages are mentioned below: 

1) Improved early quality 
2) Same eventual quality 
3) Our algorithms PSNM and PB dynamically adjust their behavior by automatically choosing optimal 

parameters, e.g., window sizes, block sizes, and sorting keys, rendering their manual specification 
superfluous. In this way, we significantly ease the parameterization complexity for duplicate 
detection in general and contribute to the development of more user interactive applications. 

II. RELATED WORK 
 
There are many researches which are carried out on the duplicate detection [1],[2] also known  as entity resolution. 

But the most prominent algorithms are the progressive blocking[3] and then the progressive Sorted Neighbourhood 
Method [4]. 

 
The problem of merging multiple databases of information about common entities are frequently encountered in 

KDD [6] and decision support applications in large commercial and government organizations. The problem we study 
is often called the Merge/Purge problem and is difficult to solve both in scale and accuracy. Large repositories of data 
typically have numerous duplicate information entries about the same entities that are difficult to cull together without 
an intelligent “equation theory” that identifies equivalent items by a complex, domain-dependent matching process. We 
have developed a system for accomplishing this Data Cleansing task and demonstrate its use for cleansing lists of 
names of potential customers in a direct marketing-type application. Our results for statistically generated data are 
shown to be accurate and effective when processing the data multiple times using different keys for sorting on each 
successive pass. Combing results of individual passes using transitive closure over the independent results, produces far 
more accurate results at lower cost. The system provides a rule programming module that is easy to program and quite 
good at finding duplicates especially in an environment with massive amounts of data. This paper details improvements 
in our system, and reports on the successful implementation for a real-world database that conclusively validates 
ourresults previously achieved for statistically generated data. 

 
We explore a pay-as-you-go approach to entity resolution,[7] where we obtain partial results “gradually”as we 

perform resolution, so we can at least get some results faster. As we will see, the partial results may not identify all the 
records that correspond to the same real-world entity. Our goal will be to obtain as much of the overall result as 
possible, as quickly as possible. Entity resolution (ER) is the problem of identifying which records in a database refer 
to the same entity. In practice, many applications need to resolve large data sets efficiently, but do not require the ER 
result to be exact. For an example, people data from the web may simply be too large to completely resolve with a 
reasonable amount of work. As another example, real-time applications may not be able to tolerate any ER processing 
that takes longer than a certain amount of time. This paper investigates how we can maximize the progress of ER with a 
limited amount of work using “hints,” which give information on records that are likely to refer to the same real-world 
entity. A hint can be represented in various formats (e.g., a grouping of records based on their likelihood of matching), 
and ER can use this information as a guideline for which records to compare first. We introduce a family of techniques 
for constructing hints efficiently and techniques for using the hints to maximize the number of matching records 
identified using a limited amount of work. Using real data sets, we illustrate the potential gains of our pay-as-you-go 
approach compared to running ER without using hints. We have proposed a pay-as-you-go approach for ER where 
given a limit in resources (e.g., work, runtime) we attempt to make the maximum progress possible. We introduce the 
novel concept of hints, which can guide an ER algorithm to focus on resolving the more likely matching records first. 
Our techniques are effective when there are either too many records to resolve within a reasonable amount of time or 
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when there is a time limit (e.g., real-time systems). We proposed three types of hints that are compatible with different 
ER algorithms: a sorted list of record pairs, a hierarchy of record partitions, and an ordered list of records. We have also 
proposed various methods for ER algorithms to use these hints. Our experimental results evaluated the overhead of 
constructing hints as well as theruntime benefits for using hints. We considered a variety ofER algorithms and two real-
world data sets. The results suggest that the benefits of using hints can be well worth the overhead required for 
constructing and using hints. We believe our work is one of the first to define pay-as-you-go ER and explicitly propose 
hints as a general technique for fast ER. 

 
[8]Efficient duplicate detection is an important task especially in large datasets. In this paper, they have compared 

two important approaches, blocking and windowing, for reducing the number of comparisons. Additionally, we have 
introduced Sorted Blocks which is generalization of blocking and windowing. Experiments with several real-world 
datasets show that Sorted Blocks outperforms the two other approaches. A challenge for Sorted Blocks is finding the 
right configuration settings, as it has more parameters than the other two approaches. An advantage of Sorted Blocks in 
comparison to the Sorted Neighbourhood Method is the variable partition size instead of a fixed size window. This 
allows more comparisons if several records have similar values, but requires fewer comparisonsif only a few records 
are similar. In the future, one of our research topics will be to evaluate strategies that group records with a high chance 
of being duplicates in the same partitions. 

 
Thorsten Papenbrock, ArvidHeise, and Felix Naumann[5] Both of the algorithms i.e. progressive blocking and 

progressive sorted neighbourhood method  increase the efficiency of duplicate detection for situations with limited 
execution time; they dynamically change the ranking of comparison candidates based on intermediate results to execute 
promising comparisons first and less promising comparisons later. To determine the performance gain of our 
algorithms, we proposed a novel quality measure for progressiveness that integrates seamlessly with existing measures. 
Sorted neighbourhood method sort the data set based on some key value and compare pairs within the window size. 
Blockingalgorithm partition a set of record using blocking key into disjoint set. The limited records are found in same 
partition. By doing this the overall number of comparisons is reduced. The multi-pass method and transitive closure are 
used in blocking method. In windowing method, there are three phase. The first phase is to assign a sorting key to each 
record. Next phase is to sort the record based on key value. The final phase is to assume fixed window size and 
compare all pairs of records appear in the window. The multi-pass method performs the sorting and windowing 
approaches multiple times to avoid mis-sort due to error in the attributes. One of the advantages of using sorted block 
in comparing with sorted neighbourhood method is the variable partition instead of a fixed size window. 

III. PROPOSED ALGORITHM 
 
The proposed solution uses two types of novel algorithms for progressive duplicate detection, which are as follows:  

 PSNM – It is known as Progressive sorted neighborhood method and it is performed over clean and small 
datasets.  

 PB – It is known as Progressive blocking and it is performed over dirty and large datasets. Both these 
algorithms improve the efficiencies over huge datasets. 

There are three stages in this workflow which are as follows: 
a)Pair selection 
b)Pair wise comparison 
c) Clustering 
Only the pair selection and clustering stages should be modified for a good workflow. 
 
A. PROGRESSIVE SORTED NEIGHBORHOOD METHOD: 

The Progressive Sorted Neighborhood Method (PSNM) depends on the conventional Sorted Neighborhood 
Method: PSNM sorts the information utilizing a predefined sorting key and just thinks about records that are inside the 
window of records in the sorted request. The instinct is that records that are close in the sorted request will probably be 
copies than records that are far separated, on the grounds that they are as of now comparative as for their sorting key. 
All the more specifically, the separation of two records in their short positions (rank-separation) gives PSNM an 
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evaluation of their coordinating probability. The PSNM calculation utilizes this instinct to iteratively change the 
window size, beginning with a little window of size two that rapidly finds the most encouraging records. This static 
methodology has, as of now been proposed as the Sorted List of Record Pairs clue , The PSNM calculation varies by 
powerfully changing the execution request of the correlations taking into account middle results (Look-
Ahead).Furthermore, PSNM integrates progressive sorting stage (Magpie Sort) and can logically prepare significantly 
bigger datasets. 

 
B. PROGRESSIVE BLOCKING: 
Dynamic Blocking (PB) is a novel approach that expands upon an equidistant blocking system and the progressive 

growth of pieces. Like PSNM, it likewise pre-sorts the records to utilize their rank-separation in this sorting for likeness 
estimation. In light of the sorting, PB first makes and after that dynamically expands a fine-grained blocking. These 
square expansions are specifically executed on neighborhoods around as of now identified copies, which empower PB 
to uncover, bunch sooner than PSNM. 

IV. PSEUDO CODE 
 

A. PROGRESSIVE SORTED NEIGHBORHOOD METHOD 
The algorithm takes five input parameters: D is a reference to the data, which has not been loaded from disk yet. 

Thesorting key K defines the attribute or attributes combination that should be used in the sorting step. W specifies the 
maximum window size, which corresponds to the window size of the traditional sorted neighbourhood method. When 
using early termination, this parameter can be set to an optimistically high default value. Parameter I defines the 
enlargement interval for the progressive iterations. For now, assume it has the default value 1. The last parameter N 
specifies the number of records in the dataset. This number can be gleaned in the sorting step, but we list it as a 
parameter for presentation purposes. Progressive Sorted Neighbourhood Require: dataset reference D, sorting key K, 
window size W, enlargement interval size I, number of records N. 

 
Step 1: procedure PSNM(D, K, W, I, N) 
Step 2: pSizecalcPartitionSize (D) 
Step 3: pNum[N/pSize-W + 1)] 
Step 4: array order size N as Integer 
Step 5: array recs size pSize as Record 
Step 6: order sort Progressive (D, K, I, pSize, pNum) 
Step 7: for currentI 2 todW=Iedo 
Step 8: for currentP1 to pNum do 
Step 9: recsloadPartition (D, currentP) 
Step 10: for dist belongs to range(currentI, I, W) do 
Step 11: for i 0 to |recs|_ dist do 
Step 12: pair<recs[i], recs[i + dist]> 
Step 13: if compare (pair) then 
Step 14: emit (pair) 
Step 15: look Ahead (pair) 
 
B. PROGRESSIVE BLOCKING  

The algorithm accepts five input parameters: The dataset reference D specifies the dataset to be cleaned and the 
keyattribute or key attribute combination K defines the sorting. The parameter R limits the maximum block range, 
which is the maximum rank-distance of two blocks in a block pair, and S specifies the size of the blocks. Finally, N is 
the size ofthe input dataset. Progressive Blocking Require: dataset reference D, key attribute K, maximum block range 
R, block size S and record number N. 
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Step 1: procedure PB(D, K, R, S, N) 
Step 2: pSizecalcPartitionSize (D) 
Step 3: bPerP [pSize/S] 
Step 4: bNum [N/S] 
Step 5: pNum [bNum/bPerP] 
Step 6: array order size N as Integer 
Step 7: array blocks size bPerP as <Integer; Record[]> 
Step 8: priority queue bPairs as <Integer; Integer; Integer> 
Step 9: bPairs{<1,1,->, . . . ,<bNum, bNum,->} 
Step 10: order sortProgressive (D, K, S, bPerP, bPairs) 
Step 11: for i 0 to pNum - 1 do 
Step 12: pBPsget(bPairs, i . bPerP, (i+1) . bPerP) 
Step 13: blocks loadBlocks (pBPs, S, order) 
Step 14: compare (blocks, pBPs, order) 
Step 15: while bPairs is not empty do 
Step 16: pBPs {} 
Step 17: bestBPstakeBest ([bPerP/4], bPairs, R) 
Step 18: for bestBP belongs to bestBPs do 
Step 19: if bestBP[1] _ bestBP[0] < R then 
Step 20: pBPspBPs U extend (bestBP) 
Step 21: blocks loadBlocks (pBPs, S, order) 
Step 22: compare (blocks, pBPs, order) 
Step 23: bPairsbPairs U pBPs 
Step 24: procedure compare (blocks, pBPs, order) 
Step 25: for pBP belongs to pBPs do 
Step 26: <dPairs, cNum> comp(pBP, blocks, order) 
Step 27: emit(dPairs) 
Step 28: pBP[2] |dPairs|/ cNum 

V. SIMULATION RESULTS 
 
PSNM executes the same comparisons because the natural SNM procedure, the algorithm takes longer to finish. 

The rationale for this commentary is the increased number of totally pricey load strategies. To cut down their 
complexity, PSNM implements partition caching. We now evaluate the average SNM algorithm, a PSNM algorithm 
without partition caching and a PSNM algorithm with partition caching on the DBLP-dataset. The results of this 
experiment are shown in determine four in the left graph. The scan suggests that the advantage of partition caching is 
big: The runtime of PSNM decreases by using 42% minimizing the runtime change between PSNM and SNM to just 
2%. 

 
 

Fig 1. Effect of partition caching and look-ahead 
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VI. CONCLUSION AND FUTURE WORK 
 
In this paper we have gone through the progressive sorted neighbourhood method and then the progressive 

blocking. Both the algorithms will adjust automatically based on the parameter .These both algorithms increase the 
efficiency of duplicate detection for situations with limited execution time and high accuracy. In future work, we want 
to combine these progressive approaches with scalable approaches for the duplicate detection in order to deliver the 
result even faster. The parallel sorted neighbourhood can be executed to find   in parallel. 
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