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ABSTRACT:  Now days, Big Data applications are very frequently used. The immense use of these HEC machines 
requires very quick I/O systems, processing and output generation. For such unprecedented quantity of data, the input 
output process plays a very crucial role. This paper attempts to provide a relatively faster I/O performing mechanism 
for HEC machines by combining the features of data compression and strategies of flexible placement of analytics. 
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I. INTRODUCTION 
 

The word Big data describes unprecedently large mixture of structured, partially-structured or completely 
unstructured data that can be mined for useful information. The quantity of data is not specific; it may range from 
petabytes to Exabyte [1]. We can identify big data through 3Vs: Volume, Variety and Velocity. Volume describes the 
extreme size of data; Variety describes varied types of data; and Velocity describes the speed with which data must be 
processed. 

To understand the voluminousity of big data consider the petabytes or Exabyte's of variedly structured data  that 
consists of records of millions of people arising from different sources .These types of data are typically variedly 
structured data that is often inadequate and inaccessible[2]. The rate at which big data is been generated is alarming. 
Big data can be mined, stored, and graphically analyzed to help companies to gain useful insight to improve operations, 
get or retain customers, andincrease revenues. To extract valuable information from big data, we need sufficient 
processing power, analytics capable machines (HEC machines) and analytical skills [3][4].  

In this paper, a model using data compression and strategies for flexible placement of analytics are combined to 
create a system with improved I/O performance on different HEC machines.The paper is organized as follows: Section 
2 describes the detailed report about HEC machines, Data compression and the data analytics placement strategies. 
Section 3 describes the existing models, proposed structure of the system and its details. Section 4 describes the 
implementation of the proposed system, Section 5 presents the results and analysis them. Section 6 concludes the paper. 

II. LITERATURE REVIEW 
 

 In order to study the proposed model, background information of high end computing machines, its data flow 
structure, the compression strategies and analytics placement strategies that are being used should be thoroughly 
studied. The details of the same are presented in the upcoming sections. 

A. High End Computing Machines 
It is very crucial to capture, format, manipulate, store, and scrutinize big data so that essential information can be 

generated from it. For this purpose, traditional database processing applications are a poor choice as they do not contain 
the required skills to work with the unstructured voluminous big data. Machines with enhanced capabilities are 
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manufactures to handle the complexities of big data. They are called High end computing applications or simply HEC 
machines [5]. 

 
B. Data Compression 

Data Compression [6] will reduce the size of data being input or output and decrease network usage of the big data 
application. Reduced data uses comparatively little bandwidth on the network than the uncompressed data. With 
compression more data can be saved in less space i.e. less storage is required. Big data comprises of complicated and 
variedly structured data. So reduction of this data is important. Co-dec stands for the sequential implementation of 
compression and decompression algorithms. Some compression formats can be split. Performance is better for large 
files if the algorithm can be split. Hadoop supports the following compression algorithms [7]:   

 
• LZO: This compression algorithm is made up of many smaller blocks of compressed data that allows tasks to be 

split into blocks. Block size should be common for compression and decompression. This is quick and splittable. 
 
• Gzip: It stands for GNU zip. Gzip [9] is based on the combination of features of LZ77 and Huffman Coding, It is 

commonly known as the DEFLATE algorithm. Gzip compresses better than LZO though it is relatively slower. 

• Bzip2:  bzip2 [8] is an open sourced data compressor which gives high-quality compression. It reduces the size of 
files to 10% to 15% of the original size. The performance of Bzip2 is asymmetric, as decompression is faster. 

• LZ4: LZ4 is a speed based lossless data compression algorithm. Its compression speed is 400 MB/s per core with 
maximum speeds ranging to multiple GB/s per core. 

Any suitable algorithm lossy or can be used as per convenience lossless for the compression of data. 

C. Data Analysis Placement Strategies 
When a request is generated by any kind of big data application, a huge amount of the requested data moves from 

storage towards the application and vice-versa. Migrating large amount of data leads to slower and inefficient network 
as it causes congestion, which deteriorates input/output performance. Hadoop MapReduce applications are capable to 
transfer processing operations instead of data i.e. analytics is transferred toward nodes that request data to be processed 
by the operations. To increase the I/O performance of High End Computing applications in Hadoop, we aim to reduce 
data movement between nodes. It can be achieved by a proposing an optimal data placement scheme that distributes 
analytics and runs it only on optimally selected places.. 

To explore the optimal places where analytics can be placed in the data flow path, four analytics placement 
strategies [10] are being introduced here. 

 Inline Processing: Inline processing is very easy to code and implement. Analysis and visualization 
routines are synchronously performed by the simulation in this strategy. ParaView [11] and VisIt [12] are 
examples of this kind of processing. 

 Helper-core Processing: Helper cores parallelly analyze and reduce data immediately after it is 
produced. The compressed data is prepared for the processing. Examples include Functional Partitioning [13] 
and Software Accelerator. 

 Dedicated-nodes processing: In this kind of processing, analytics is executed on staging nodes and 
active storage nodes. 

 Offline Processing: In this strategy, data is read back for analysis after it has been written to storage. 
Any one of the above four strategies or a balanced combination of two or more of these placement strategies can be 

selected and executed independently. 

III. PROPOSED SYSTEM 
 

The placement of analytics in the I/O path of HEC applications is based on calculation of various parameters. The 
parameters like latency, end to end transfer band width are considered. Many models have been used to select an 
optimal analytics placement position. Let us study them one by one. 
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A. Compression Quantitative Model 
A specific set of performance and cost metrics are defined for compression quantitative model .This simple 

performance model is used to compare the different compression algorithms. Table 1 lists all the parameters used in the 
compression model. 

 
Table 1: Parameters Used in Model 

ρ , ρc ,ρd ρ :Available processor cycles Ratio 
ρc ,ρd : Available cycles Ratio on compression ,decompression side ρ=1 (when special 

core is used for compression), 
<1(when a processor is shared by processes) , 
>1 (when parallel execution is done with multiple processors 

BW Bandwidth of  Data transfer 
Bd Size of data Block 
Tc , Td Compression/Decompression Throughput 
δ Compression Ratio 
Ɛ Impact factor of cache (here Ɛ =1) 
to Total end to end latency to original data transfer 
tcomp,tdecomp Time taken to compress ,decompress data 
ttransfer Transfer time 
tTotal Total end to end transfer latency 

The relations that are used to evaluate the cost of transfer of compressed data from sender to receiver are given 
below: 

to = Bd/BW;                                                   (1) 

The end-to-end original data transfer latency with available bandwidth BW is calculated using Eq. (1).  

tcomp = Bd/(Tc ∗ ρ ∗ ε);                                  (2) 

tdecomp= Bd/(Td ∗ ρ ∗ ε);                                  (3) 

The compression and decompression time on sender and receiver respectively are calculated using Eq. (2) and Eq. 
(3).  

ttransfer = (Bd∗ δ)/BW;                                       (4) 

The time required to transfer compressed data from sender to receiver is calculated usingEq.(4).  

ttotal =tcomp +ttransfer +tdecomp                                   (5) 

The total cost is shown by Eq.(5). 
Using these equations, the data transfer costs can be compared with/without compression under the selected 

compression algorithm. 
 

B. End to End Latency Analysis 
Analysis of end to end latency is exclusively used to find the resource cost of the analytics in all cases. This 

analysis varies for different analytics placement strategies. 
For Inline compression, the data is transferred from computational nodes to the storage. It doesn’t include data 

decompression. Therefore, 

to>ttotal⇒to>tcomp +ttransfer; and 



 
                   
                  ISSN(Online): 2320-9801 
                        ISSN (Print) :  2320-9798                                                                                                                         

International Journal of Innovative Research in Computer 
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 4, Issue 3, March 2016 
 

Copyright to IJIRCCE                                                             DOI: 10.15680/IJIRCCE.2016. 0403080                                           4027   

 

                                               Tc∗ (1 −δ) ∗ ρ ∗ ε > BW;                                      (6) 

Here δ and Tc (compression ratio) are constants. Keeping ρ and BW in a definite proportion the improvement of 
end-to-end latency can be evaluated. 

C. Flex-analytics 
The algorithm aims at placing the analysis at the most optimal location so as to reduce the cost of data transfer 

subject to the availability of resources and performance penalties. The algorithm takes as input the potential locations, 
available resources at those locations and the performance profiles.  

The flexible analytics placement algorithm [14] is performed in the placement policy engine. 

 

IV. IMPLEMENTATION 
 

To implement the system, a heterogeneous Hadoop cluster of 16 nodes was developed using a master slave 
environment. The master controls 16 nodes in the cluster. The slaves consists of RAM ranging from 1gb to 4 gb, use 
CPU Type  ranging from Core 2 duo to I5, operating system as fedora operating with the networking bandwidth of 10 
Mbps. All results are presented in the next section averaged at minimum 3 time run. 

V. RESULTS AND ANALYSIS 
 

Figure 1: In this graph the analysis of bandwidth from simulation stage to the storage is done. Compression is 
deployed on computational side to change and reduce the size of data. We have compared the expected, estimated and 
experimental bandwidth in end to end connection environment. The estimated bandwidth is calculated as Tc * (1- δ) 
*ρ*ε > BW .This graph shows the tested bandwidth with/without compression. 
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Figure 1/2: Data Transfer Bandwidth Without / With Staging 

Figure 2: The compression service is deployed on the computational nodes in order to reduce the size of the data 
block. This experiment consists of two cases: simulation to staging and helper cores to staging which can both be 
referred as memory to memory transfers. This graph shows the experimentally tested bandwidth with/without 
compression. In this experiment, more than one data blocks are transferred from simulation to staging phase nodes. 
Hence decompression/compression is deployed on the computation and staging nodes separately. 

 

Figure 3:Transfer Latency Of Uncompressed Data Against Varying Bandwidth 

Figure 3: To evaluate the behavior of the compression based model in real world cases, we measure the end to end 
latency on different available bandwidths. For this evaluation the decompression and compression has been exclusively 
tested on a single processor. The graph shows the results of the experiment, where the baseline marks the transfer 
latency of raw uncompressed data.  

The results clearly specify the (de)compression time of lossless data compression comprises of more than 98% of 
end to end latency when transferring bandwidth is larger than1.034 Gb/s. On the other hand, for lossy compression it 
accounts for more than 95% of the same. 

VI. CONCLUSION AND FUTURE WORK 
 

This works deals with the enhancement of the input/output performance of big data applications using compression 
algorithms and staging of nodes. Different type of models was studied in the paper to explore the solution of the 
existing issue. The finally worked out model contains a balanced combination of data compression and flexible 
placement of analytics. Our future work may focus on the improvement of the factors like compression ratio, dynamic 
optimization of placement of analytics and availability of processors. 
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