
International Journal of Innovative Research in Computer and Communication Engineering

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | Impact Factor: 7.194 |

||Volume 8, Issue 4, April 2020||

IJIRCCE © 2020 | An ISO 9001:2008 Certified Journal | 1013

Implementing Arbitrary Precision in Java

Script Runtime
Pragathi N M, Mayura D Tapkire

B.E.Student, Department of Information Science and Engineering, National Institute of Engineering, Mysuru, India

Assistant Professor, Department of Information Science and Engineering, National Institute of Engineering,

Mysuru, India

ABSTRACT: One of the well-known oddities of IEEE 754 (Floating point arithmetic standard) is 0.1 + 0.2 ==

0.30000000000000004. This is because of how 64-bit floating point numbers are represented internally. While the

difference might be very minute, applications in the domain of banking and astronomy cannot truly rely on such

incorrect calculations. This problem can be solved using the arbitrary precision arithmetic. While arbitrary precision

arithmetic is implemented in functional programming languages like Lisp, JavaScript does not natively support

arbitrary precision arithmetic as of January 2020. It supports BigInt, however, implementing BigNum is currently in the

proposal stage of the JavaScript Technical Committee tc39.

KEYWORDS: Arbitary precession arithmetic, domain of banking,astronomy

I. INTRODUCTION

To implement arbitrary precision arithmetic in JavaScript run-time engine such as Chrome’s V8 engine and

Mozilla’ Spider-Monkey.The system allows developers to use arbitrary precision arithmetic in JavaScript runtime by

making use of the Decimal object. It also supports functions like exponentials, logarithms, trigonometric and inverse-

trigonometric operations. Some of the default configurations were assumed which were allowed to be tweaked.

For the known constants such as ln(10), PI, and E, the first 1000 digits of the constants were hard-coded for immediate use.

II. LITERATURE REVIEW

In most computer programs and computer environments, the accuracy of any calculation (including addition) is limited

by the size of the computer word, that is, the largest number that can be stored in one of the processor registers. In mid-

2002, the most common processor word size was 32 bits, which is the integer . Therefore, general

integer arithmetic on a 32-bit machine allows adding two 32-bit numbers to get 33 bits (one word plus one overflow

bit), multiplying two 32-bit numbers to get 64 bits (Although the most common programming language, C, cannot

directly access the top word and depends on the programmer to create a machine language function or to write a much

slower function in C with a final overhead of about nine more multiplications) and part of a 64- Bit number by a 32-bit

number that generates a 32-bit quotient and a 32-bit remainder / module.

Arithmetic with any precision consists of a number of algorithms, functions and data structures that have been specially

developed for handling numbers of any size. These functions often modify standard techniques for paper and pencil

arithmetic (e.g. long division) and apply them to numbers that are divided into word-sized fragments. An important

difficulty in creating good arbitrary numerical accuracy is knowing where to stop a calculation. A simple example of

this problem is shown by the binary extension 1/3, which is given by the non-deterministic binary decimal

. As a result of the fact that exact numbers do not have termination binary fraction expansions,

additional functionality must be incorporated into an arbitrary precision calculation system. This can be in the form of a

failure test, or a configurable 'maximum precision' in which the calculation will always stop when it reaches a very

small particular number.

III. EXISTING SYSTEM

Currently, both the most popular JavaScript engines provide something called a BigInt data type. BigInt is capable of

holding arbitrary length of integers. It allows simple arithmetic operations such as addition, multiplication, comparison

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | Impact Factor: 7.194 |

||Volume 8, Issue 4, April 2020||

IJIRCCE © 2020 | An ISO 9001:2008 Certified Journal | 1014

and subtraction. However, it has no support for non-integers. Fractions cannot be handled by BigInt and division is

also not supported. An implementation of a floating-point system conforming to this standard may be realized entirely

in software, entirely in hardware, or in any combination of software and hardware. For operations specified in the

normative part of this standard, numerical results and exceptions are uniquely determined by the values of the input

data, sequence of operations, and destination formats, all under user control.

IV. METHODOLOGY

4.1.Functional programming

Functional programming is an example of programming where we try to combine everything with a pure style of

mathematical functions. This is a declared type of programming style. Its main focus is on "what can be solved" as

opposed to an imperative style, where/ the main focus is on "how to solve". Use expressions instead of instructions. A

representation is evaluated to produce a value while a command is executed to determine the variable.

4.2 SYSTEM DESIGN

The objective was fulfilled by defining the working Decimal object. The implementation of the function in various edge

cases were handled by referring to the IEEE 754 standards as well as the functioning of the runtime engine as specified in

the specs laid down by the tc39 of JavaScript.

Some of the defaults includes:

 ROUND_UP

 ROUND_DOWN

 ROUND_CEIL

 ROUND_FLOOR

 ROUND_HALF_UP

 ROUND_HALF_DOWN

 ROUND_HALF_EVEN

 ROUND_HALF_CEIL

 ROUND_HALF_FLOOR

Some of the functions considered for the implementation were:

 Trigonometric: sine, cos, tan and their multiplicative inverses

 Inverse Trigonometric: asin, acos, atan and their multiplicative inverses

 Logarithmic and exponential

 Roots

 Precision, round, ceil, floor, abs

There were some read-only functions defined, and there were other static functions defined to be used not by the objects,

but by the class. For example, in native JavaScript, there is Math.PI, and Math.E.

4.3 SYSTEM IMPLEMENTATION

The implementation of the Decimal object was started with laying down the necessary components of the object.

That includes the configuration parameters as well as the proper way of handling the numerical values.

One of the primitive ways of accomplishing the arbitrary precision for basic calculation is the lazy evaluation method. The

numerator and the denominator is often stored separately. While performing the operations, the numerator and denominator

of two or more numbers are handled separately. That was the initial step taken in order to achieve the arbitrary precision.

Whenever the value was required, it was evaluated at that time, by computing the division, with the limit of precision as

configured.

However, this does not work well, when there are more complex operations involved. Taylor series operations for complex

functions is tempting, but that also bring along the loss of precision. One of the ways to handle this was to set the flags of

the operations: such as logarithmic, trigonometric, as well as inverse trigonometric.

The easier functions such as ceil, floor, round, as well as abs were calculated by using the naïve definitions of the functions.

For the moderate ones like multiplication and division, the initial method of repeated addition, and subtraction respectively

were handled for the integers. However, this is not the most optimal method to implement in order to achieve the final

result when there are floating point numbers involved.

Some of the default configurations were assumed which were allowed to be tweaked.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | Impact Factor: 7.194 |

||Volume 8, Issue 4, April 2020||

IJIRCCE © 2020 | An ISO 9001:2008 Certified Journal | 1015

For the known constants such as ln(10), PI, and E, the first 1000 digits of the constants were hard-coded for immediate use.

Parsing of the numbers as string was handled character by character basis, looking for a floating point or an exponent, and

handling the cases separately in the constructor.

V. TESTING

Various test cases were handled by the unit testing library called JestJS. For each function, setting the configuration,

the tests were performed to check for the value of the evaluation.

Several criteria, such as significand, exponential, floating parts were considered, and the values of the functions were

tested for even the NaN conditions.

Expected Expression Operation

NaN Asin(40) inverse trigonometric

1.5707963267948966192 Asin(1) inverse trigonometric

1 Cos(0) trigonometric

2 Cube root(8) root

-4.530654896083492777 Cube root(-93) Root

5 Abs(-5) Absolute

0.2 0.1 + 0.2 Addition

18446744073709551616 2 power 64 Exponent

4.605170185988091368 Ln (100) Logarithmic

VI. EXPERIMENTAL RESULTS

Figure 1. The decimal object performing exponential operation.

Figure 2. Decimal object performing division operation

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | Impact Factor: 7.194 |

||Volume 8, Issue 4, April 2020||

IJIRCCE © 2020 | An ISO 9001:2008 Certified Journal | 1016

Figure 3. Decimal object performing inverse trigonometric operations.

Figure 4. Performing logarithmic operations on Decimal objects.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | Impact Factor: 7.194 |

||Volume 8, Issue 4, April 2020||

IJIRCCE © 2020 | An ISO 9001:2008 Certified Journal | 1017

Figure 5. Performing square root operations on Decimal objects.

Figure 6. Overcoming the IEEE 754 shortcomings.

VII. ADVANTAGES, DISADVANTAGES AND LIMITATIONS

 7.1 Advantages

The advantages includes:

 Greater precision of arithmetic operations.

 Overcoming the downfalls of IEEE 754.

 Functional style of the implementation means there are no side effects since there is no mutability.

 Allows developers to set precision arbitrarily as required.

 Provides various functions for mathematical operation.

 Ability to set the configuration and change at will.

http://www.ijircce.com/

International Journal of Innovative Research in Computer and Communication Engineering

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | Impact Factor: 7.194 |

||Volume 8, Issue 4, April 2020||

IJIRCCE © 2020 | An ISO 9001:2008 Certified Journal | 1018

7.2 Disadvantages and limitations

 The theoretical limitation of the concept is the memory available in the machine.

 This is not a native implementation and therefore it is not the most memory efficient solution.

 Operators are not overloaded in order to not rely on the functions.

VIII. CONCLUSION

In conclusion, now there exists a Decimal object which supports arbitrary precision arithmetic in JavaScript runtime

engine. It also supports some of the complex functions which were previously not available in the run time.

REFERENCES

1. https://mathworld.wolfram.com/ArbitraryPrecision.html Uznanski, Dan. "Arbitrary Precision." From MathWorld--A Wolfram Web Resource,

createdby EricW. Weisstein
2. https://ieeexplore.ieee.org/document/4610935 IEEE Std 754-2019 (Revision of IEEE 754-2008)

3. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt , by MDN contributors

4. https://github.com/tc39/proposal-decimal
5. https://www.geeksforgeeks.org/functional-programming-paradigm/

6. https://www.sciencedirect.com/science/article/pii/S1567832604000748, The Journal of Logic and Algebraic Programming, Volume 64, Issue

1, July 2005
7. https://people.eecs.berkeley.edu/~fateman/papers/decimalfloat.pdf Arbitrary-precision Decimal Floating-Point Numbers: More than You

Expected, Less than You Asked For? Richard J. Fateman

8. https://old.cescg.org/CESCG-2015/papers/Langer-Arbitrary-Precision_Arithmetics_on_the_GPU.pdf
 Arbitrary-Precision Arithmetics on the GPU Bernhard Langer Supervised by: Thomas Auzinger

9. https://ieeexplore.ieee.org/document/7891894 (Volume: 66 , Issue:12 , Dec. 1 2017)

10. https://www.researchgate.net/publication/222592446_Arbitrary_precision_real_arithmetic_Design_and_algorithms
Arbitrary precision real arithmetic: Design and algorithms, 10.1016/j.jlap.2004.07.003, Journal of Logic and Algebraic Programming

11. D. GoldbergWhat every computer scientist should know about floating point arithmetic

ACM Computing Surveys, 23 (1) (1991), pp. 5-47, Available from:
<http://docs.sun.com/htmlcoll/coll.648.2/iso-8859-1/NUMCOMPGD/ncg_goldberg.html>.

http://www.ijircce.com/
https://mathworld.wolfram.com/ArbitraryPrecision.html
https://mathworld.wolfram.com/topics/Uznanski.html
https://mathworld.wolfram.com/
https://mathworld.wolfram.com/about/author.html
https://ieeexplore.ieee.org/document/4610935
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://wiki.developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt$history
https://github.com/tc39/proposal-decimal
https://www.geeksforgeeks.org/functional-programming-paradigm/
https://www.sciencedirect.com/science/article/pii/S1567832604000748
https://www.sciencedirect.com/science/journal/15678326
https://www.sciencedirect.com/science/journal/15678326/64/1
https://www.sciencedirect.com/science/journal/15678326/64/1
https://people.eecs.berkeley.edu/~fateman/papers/decimalfloat.pdf
https://old.cescg.org/CESCG-2015/papers/Langer-Arbitrary-Precision_Arithmetics_on_the_GPU.pdf
https://ieeexplore.ieee.org/document/7891894
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8097397
https://www.researchgate.net/publication/222592446_Arbitrary_precision_real_arithmetic_Design_and_algorithms
%3chttp:/docs.sun.com/htmlcoll/coll.648.2/iso-8859-1/NUMCOMPGD/ncg_goldberg.html%3e.

