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ABSTRACT: The Natural images are the composite effect of multiple factors related to scene structure, illumination, 
and imag-ing. For facial images, the factors include different facial geometries, expressions, head poses, and lighting 
condi-tions. We apply multilinear algebra, the algebra of higher-order tensors, to obtain a sparing representation of 
facial image ensembles which separates these factors. Our representation, called Tensor Faces, yields improved facial 
recognition rates relative to standard eigenfaces. 

 
I.INTRODUCTION 

 
People possess a remarkable ability to recognize faces when confronted by a broad variety of facial geometries, expres-sions, 
head poses, and lighting conditions. Developing a similarly robust computational model of face recognition remains a 
difficult open problem whose solution would have substantial impact on biometrics for identification, surveil-lance, human-
computer interaction, and other applications.  

Prior research has approached the problem of facial rep-resentation for recognition by taking advantage of the func-
tionality and simplicity of linear algebra, the algebra of matrices. Principal components analysis (PCA) has been a popular 
technique in facial image recognition [1]. This method of linear algebra address single-factor variations in image formation. 
Thus, the conventional “eigenfaces” fa-cial image recognition technique [9, 12] works best when person identity is the only 
factor that is permitted to vary. If other factors, such as lighting, viewpoint, and expression, are also permitted to modify 
facial images, eigenfaces face difficulty. Attempts have been made to deal with the short-comings of PCA-based facial image 
representations in less constrained (multi-factor) situations; for example, by em-ploying better classifiers [8].  

Bilinear models have recently attracted attention because of their richer representational power. The 2-mode analysis 
technique for analyzing (statistical) data matrices of scalar entries is described by Magnus and Neudecker [6]. 2-mode 
analysis was extended to vector entries by Marimont and 
Wandel [7] in the context of characterizing color surface and illuminant spectra. Tenenbaum and Freeman [10] applied 
this extension to three different perceptual tasks, including face recognition. 
  

We have recently proposed a more sophisticated math-ematical framework for the analysis and representation of image 
ensembles, which subsumes the aforementioned methods and which can account generally and explicitly for each of the 
multiple factors inherent to facial image for-mation [14]. Our approach is that of multilinear algebra— the algebra of higher-
order tensors. The natural generaliza-tion of matrices (i.e., linear operators defined over a vec-tor space), tensors define 
multilinear operators over a set of vector spaces. Subsuming conventional linear analysis as a special case, tensor analysis 
emerges as a unifying mathe-matical framework suitable for addressing a variety of com-puter vision problems. More 
specifically, we perform N-mode analysis, which was first proposed by Tucker [11], who pioneered 3-mode analysis, and 
subsequently devel-oped by Kapteyn et al. [4, 6] and others, notably [2, 3]. 

  
In the context of facial image recognition, we apply a higher-order generalization of PCA and the singular value 

decomposition (SVD) of matrices for computing principal components. Unlike the matrix case for which the exis-tence and 
uniqueness of the SVD is assured, the situation for higher-order tensors is not as simple [5]. There are mul-tiple ways to 
orthogonally decompose tensors. However, one multilinear extension of the matrix SVD to tensors is most natural. We apply 
this N-mode SVD to the represen-tation of collections of facial images, where multiple image formation factors, i.e., modes, 
are permitted to vary. Our TensorFaces representation separates the different modes underlying the formation of facial 
images. After review-ing TensorFaces in the next section, we demonstrate in Sec-tion 3 that TensorFaces show promise for 
use in a robust facial recognition algorithm. 
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II. TENSORFACES 
 
We have identified the analysis of an ensemble of images resulting from the confluence of multiple factors related to 
scene structure, illumination, and viewpoint as a prob-lem in multilinear algebra [14]. Within this mathematical 
framework, the image ensemble is represented as a higher-dimensional tensor. This image data tensor D must be de-
composed in order to separate and parsimoniously repre-sent the constituent factors. To this end, we prescribe the N-
mode SVD algorithm, a multilinear extension of the con-ventional matrix singular value decomposition (SVD). 
  

Appendix A overviews the mathematics of our multilin-ear analysis approach and presents the N-mode SVD algo-
rithm. In short, an order N > 2 tensor or N-way array D is an N-dimensional matrix comprising N spaces. N-mode SVD 
is a “generalization” of conventional matrix (i.e., 2-mode) SVD. It orthogonalizes these N spaces and decom-poses the 
tensor as the mode-n product, denoted ×n (see Equation (4) in Appendix A), of N-orthogonal spaces, as follows: 
 

D = Z ×1 U1 ×2 U2 . . . ×n Un . . . ×N  UN .     (1) 
 
Tensor Z, known as the core tensor, is analogous to the diagonal singular value matrix in conventional matrix SVD (although 
it does not have a simple, diagonal structure). The core tensor governs the interaction between the mode matri-ces U1, . . . , 
UN . Mode matrix Un contains the orthonor-mal vectors spanning the column space of matrix D(n) re-sulting from the mode-
n flattening of D (see Appendix A).  

The multilinear analysis of facial image ensembles leads to the TensorFaces representation. To illustrate Tensor-Faces, we 
employed in our experiments a portion of the Weizmann face image database: 28 male subjects pho-tographed in 5 
viewpoints, 3 illuminations, and 3 expres-sions. Using a global rigid optical flow algorithm, we aligned the original 512 × 
352 pixel images relative to one reference image. The images were then decimated by a fac-tor of 3 and cropped as shown in 
Fig. 1, yielding a total of 7943 pixels per image within the elliptical cropping win- dow.  

Our facial image data tensor D is a 28 ×5 ×3 ×3 ×7943 tensor. Applying multilinear analysis to D, using our N-mode 
decomposition algorithm with N = 5, we obtain  
D = Z ×1 

U
people ×2 

U
views ×3 

U
illums ×4 

U
expres ×5 

U
pixels,  

(2)
  

where the 28 × 5 × 3 × 3 × 7943 core tensor Z governs the interaction between the factors represented in the 5 mode 
matrices: The 28 × 28 mode matrix Upeople spans the space of people parameters, the 5 ×5 mode matrix Uviews spans the 
space of viewpoint parameters, the 3 ×3 mode matrix Uillums spans the space of illumination parameters and the 3 × 3 
mode matrix Uexpres spans the space of expression parame-ters. The 7943 × 1260 mode matrix Upixels orthonormally 
spans the space of images. Reference [14] discusses the at-tractive properties of this analysis, some of which we now 
summarize. 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
Figure 1: The facial image database (28 subjects × 45 images per subject). (a) The 28 subjects shown in expression 2 (smile), viewpoint 3 

(frontal), and illumination 2 (frontal). (b) The full image set for subject 1. Left to right, the three panels show images captured in 
illuminations 1, 2, and 3. Within each panel, images of expressions 1, 2, and 3 are shown horizontally while images from viewpoints 1, 2, 3, 

4, and 5 are shown vertically. The image of subject 1 in (a) is the image situated at the center of (b). 
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Our multilinear analysis subsumes linear, PCA analy-sis. As shown in Fig. 2(a), each column of Upixels is an “eigenimage”. 
These eigenimages are identical to conven-tional eigenfaces [9, 12], since the former were computed by performing an SVD 
on the mode-5 flattened data ten-sor D which yields the matrix D(pixels). The advantage of multilinear analysis, however, is that 
the core tensor Z can transform the eigenimages in Upixels into TensorFaces, which represent the principal axes of variation 
across the various modes (people, viewpoints, illuminations, expressions) and represents how the various factors interact with 
each other to create the facial images. This is accomplished by simply forming the product Z ×5 Upixels. By contrast, the PCA 
basis vectors or eigenimages represent only the principal axes of variation across images.  

Our facial image database comprises 45 images per per-son that vary with viewpoint, illumination, and expres-sion. 
PCA represents each person as a set of 45 vector-valued coefficients, one from each image in which the per-son 
appears. The length of each PCA coefficient vector is 28 × 5 × 3 × 3 = 1260. By contrast, multilinear analy-sis 
enables us to represent each person with a single vector  
coefficient of dimension 28 relative to the bases comprising the 28 × 5 × 3 × 3 × 7943 tensor  

B = Z ×2 
U

views  ×3 
U

illums  ×4 
U

expres  ×5 
U

pixels,     
(3)

 
 
 
 
 

(a)  
people↓ viewpoints→ people↓ illuminations→ people↓ expressions→ 

 
 
 
 
 
 
 
 
 
 
 
 
 

. . . 

. . . 

. . . 
(b) (c) (d) 

 
Figure 2: Some of the TensorFaces basis vectors resulting from the multilinear analysis of the facial image data tensor 
D. (a) The first 10 PCA eigenvectors (eigenfaces), which are contained in the mode matrix Upixels, and are the principal 
axes of variation across all images. (b,c,d) A partial visualization of the 28 × 5 × 3 × 3 × 
7943 tensor B = Z ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels, which  
defines 45 different bases for each combination of viewpoints, il-lumination and expressions, as indicated by the labels 
at the top of each array. These bases have 28 eigenvectors which span the peo-ple space. The eigenvectors in any 
particular row play the same role in each column. The topmost row across the three panels de-picts the average person, 
while the eigenvectors in the remaining rows capture the variability across people in the various viewpoint, 
illumination, and expression combinations. 
 
some of which are shown in Fig. 2(b–d). Each column in the figure is a basis matrix that comprises 28 eigenvectors. In 
any column, the first eigenvector depicts the average per-son and the remaining eigenvectors capture the variability across 
people, for the particular combination of viewpoint, illumination, and expression associated with that column. 
 

III. RECOGNITION USING TENSORFACES 
 
We propose a recognition method based on multilinear anal-ysis analogous to the conventional one for linear PCA anal-ysis. 
In the PCA or eigenface technique, one decomposes a data matrix D of known “training” facial images dd into a reduced-
dimensional basis matrix BPCA and a matrix C con-taining a vector of coefficients cd associated with each vec-torized image 
dd. Given an unknown facial image d, the projection operator B−

PCA
1 linearly projects this new image into the reduced-

dimensional space of image coefficients. Our multilinear facial recognition algorithm performs the TensorFaces 
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decomposition (2) of the tensor D of vec-torized training images dd, extracts the matrix Upeople which contains row vectors 
cT

p of coefficients for each person p, and constructs the basis tensor B according to (3). We in-dex into the basis tensor for a 
particular viewpoint v, illu-mination i, and expression e to obtain a subtensor Bv,i,e of dimension 28 × 1 × 1 × 1 × 7943. We 
flatten Bv,i,e along the people mode to obtain the 28 ×7943 matrix Bv,i,e(people). Note that a specific training image dd of 
person p in view-point v, illumination i, and expression e can be written as 
 
dp,v,i,e = BT ( )cp; hence, cp = B−T ( )dp,v,i,e. v,i,e people v,i,e people 

Now, given an unknown facial image d, we use the pro-jection operator B−
v,i,e

T(
people

)  to project d into a set of can- 
 
didate coefficient vectors cv,i,e = B−

v,i,e
T(

people
)d for every v, i, e combination. Our recognition algorithm compares each 

 
cv,i,e against the person-specific coefficient vectors cp. The best matching vector cp—i.e., the one that yields the 
small-est value of ||cv,i,e − cp|| among all viewpoints, illumina-tions, and expressions—identifies the unknown image 
d as portraying person p. 
 

As the following table shows, in our preliminary ex-periments with the Weizmann face image database, Ten-
sorFaces yields significantly better recognition rates than eigenfaces in scenarios involving the recognition of people 
imaged in previously unseen viewpoints (row 1) and under a previously unseen illumination (row 2): 
 

Recognition Experiment PCA TensorFaces 
   

Training: 23 people, 3 viewpoints (0, ±34), 4 illuminations   
Testing:  23 people, 2 viewpoints (±17), 4 illuminations (center, left, 61% 80% 
right, left+right)   

Training: 23 people, 5 viewpoints (0, ±17, ±34), 3 illuminations   
Testing: 23 people, 5 viewpoints (0, ±17, ±34), 4th illumination 27% 88% 

   

 
IV. CONCLUSION 

 
We have approached the analysis of an collection of facial images resulting from the confluence of multiple factors related to 
scene structure, illumination, and viewpoint as a problem in multilinear algebra in which the image en-semble is represented 
as a higher-dimensional tensor. Us-ing the “N-mode SVD” algorithm, a multilinear exten-sion of the conventional matrix 
singular value decompo-sition (SVD), this image data tensor is decomposed in or-der to separate and parsimoniously 
represent the constituent factors. Our analysis subsumes as special cases the sim-ple linear (1-factor) analysis associated with 
conventional SVD and principal components analysis (PCA), as well as the incrementally more general bilinear (2-factor) 
anal-ysis that has recently been investigated in computer vi-sion. Our completely general multilinear approach accom-
modates any number of factors by exploiting tensor machin- 
 
. 
ery and, in our experiments, it yields significantly better recognition rates than standard eigenfaces. 
 

We plan to investigate dimensionality reduction in con-junction with TensorFaces (refer to the final paragraph =⇒ of 
Appendix A). See [13] in these proceedings for the ap-plication of multilinear analysis to the recognition of people and 
actions from human motion data. 
 
A    Multilinear Analysis 
 
A tensor is a higher order generalization of a vector (first order tensor) and a matrix (second order tensor). Tensors 

are multilinear mappings over a set of vector spaces. The order of tensor A ∈ IRI1×I2×...×IN is N. Elements of  
are 

denoted as
 Ai1...in...iN 

or
 ai1...in...iN 

, where
 1 ≤ in ≤ In. In tensor terminology, matrix column vectors are referred to as 

mode-1 vectors and row vectors as mode-2 vectors. The mode-n vectors of an Nth order tensor A are the In-
dimensional vectors obtained from A by vary-ing index in while keeping the other indices fixed. The mode-n vectors 
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are the column vectors of matrix A(n) ∈ 
 

IR
I
n×(

I
1
I
2
...I

n−1
I
n+1

...I
N ) that results by mode-n flattening the tensor A (see Fig. 1 in [14]). 

A generalization of the product of two matrices is the product of a tensor and a matrix. The mode-n product 
of a tensor A ∈ IR 

I
1×

I
2×

...
×
I
n×

...
×
I
N   by a matrix M ∈ 

J I  
 

IR  n× n , denoted by A ×n  M, is the I1  × . . . × In−1  ×
 

Jn × In+1 × . . . × IN  tensor  
 

  (A ×n 
M

)i1...in−1jnin+1...iN  = 
(4)

 

   ai1...in−1inin+1...iN mjnin . 
 

   in  
 

 
The mode-n product can be expressed in terms of flattened matrices as B(n) = MA(n).

1  
Our N-mode SVD algorithm for decomposing D accord-ing to equation (1) is:  

1. For n = 1, . . . , N, compute matrix Un in (1) by com-puting the SVD of the flattened matrix D(n) and set-ting Un 
to be the left matrix of the SVD. 2   

2. Solve for the core tensor as follows:   
Z = D ×1 UT

1  ×2 UT
2  . . . ×n UT

n  . . . ×N  UT
N .   (5)  

 
2 The mode-n product of a tensor and a matrix is a special case of the in-ner product in multilinear algebra and 

tensor analysis. Note that for tensors  
and matrices of the appropriate sizes, A×m U ×n V = A×n V ×m U and (A ×n U) ×n V = A × n (VU).  

2When D(n) is a non-square matrix, the computation of Un in the singular value decomposition (SVD) D(n) = UnΣVn
T 

can be per-formed efficiently, depending on which dimension of D(n) is smaller, by decomposing either D(n)DT
(n) = 

UnΣ2UT
n and then computing  

Vn
T = Σ+UT

n D(n) or by decomposing DT
(n)D(n) = VnΣ2Vn

T and then computing Un = D(n)VnΣ+. 
Dimensionality reduction in matrix principal component analysis is obtained by truncation of the singular value 
decomposition (i.e., deleting eigenvectors associated with the smallest eigenvalues). Unfortunately, this does not have a trivial 
multilinear counterpart. According to [3], a useful generalization to tensors involves an optimal rank-(R1, R2, . . . , RN ) 
approximation which iteratively opti-mizes each of the modes of the given tensor, where each optimization step involves a 
best reduced-rank approxima-tion of a positive semi-definite symmetric matrix. This tech-nique is a higher-order extension of 
the orthogonal iteration for matrices. 
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