Facial Image Analysis Using Multilinear Algebra

P.Jennifer, Dr. A. Muthu kumaravel
Department of MCA, Bharath Institute of Science and Technology, Chennai, TN, India.
Department of MCA, Bharath Institute of Science and Technology, Chennai, TN, India.

Abstract

The Natural images are the composite effect of multiple factors related to scene structure, illumination, and imag-ing. For facial images, the factors include different facial geometries, expressions, head poses, and lighting condi-tions. We apply multilinear algebra, the algebra of higher-order tensors, to obtain a sparing representation of facial image ensembles which separates these factors. Our representation, called Tensor Faces, yields improved facial recognition rates relative to standard eigenfaces.

I.INTRODUCTION

People possess a remarkable ability to recognize faces when confronted by a broad variety of facial geometries, expres-sions, head poses, and lighting conditions. Developing a similarly robust computational model of face recognition remains a difficult open problem whose solution would have substantial impact on biometrics for identification, surveil-lance, humancomputer interaction, and other applications.

Prior research has approached the problem of facial rep-resentation for recognition by taking advantage of the functionality and simplicity of linear algebra, the algebra of matrices. Principal components analysis (PCA) has been a popular technique in facial image recognition [1]. This method of linear algebra address single-factor variations in image formation. Thus, the conventional "eigenfaces" fa-cial image recognition technique $[9,12]$ works best when person identity is the only factor that is permitted to vary. If other factors, such as lighting, viewpoint, and expression, are also permitted to modify facial images, eigenfaces face difficulty. Attempts have been made to deal with the short-comings of PCA-based facial image representations in less constrained (multi-factor) situations; for example, by em-ploying better classifiers [8].

Bilinear models have recently attracted attention because of their richer representational power. The 2 -mode analysis technique for analyzing (statistical) data matrices of scalar entries is described by Magnus and Neudecker [6]. 2-mode analysis was extended to vector entries by Marimont and
Wandel [7] in the context of characterizing color surface and illuminant spectra. Tenenbaum and Freeman [10] applied this extension to three different perceptual tasks, including face recognition.

Abstract

We have recently proposed a more sophisticated math-ematical framework for the analysis and representation of image ensembles, which subsumes the aforementioned methods and which can account generally and explicitly for each of the multiple factors inherent to facial image for-mation [14]. Our approach is that of multilinear algebra- the algebra of higherorder tensors. The natural generaliza-tion of matrices (i.e., linear operators defined over a vec-tor space), tensors define multilinear operators over a set of vector spaces. Subsuming conventional linear analysis as a special case, tensor analysis emerges as a unifying mathe-matical framework suitable for addressing a variety of com-puter vision problems. More specifically, we perform N-mode analysis, which was first proposed by Tucker [11], who pioneered 3-mode analysis, and subsequently devel-oped by Kapteyn et al. [4, 6] and others, notably [2, 3].

In the context of facial image recognition, we apply a higher-order generalization of PCA and the singular value decomposition (SVD) of matrices for computing principal components. Unlike the matrix case for which the exis-tence and uniqueness of the SVD is assured, the situation for higher-order tensors is not as simple [5]. There are mul-tiple ways to orthogonally decompose tensors. However, one multilinear extension of the matrix SVD to tensors is most natural. We apply this N-mode SVD to the represen-tation of collections of facial images, where multiple image formation factors, i.e., modes, are permitted to vary. Our TensorFaces representation separates the different modes underlying the formation of facial images. After review-ing TensorFaces in the next section, we demonstrate in Sec-tion 3 that TensorFaces show promise for use in a robust facial recognition algorithm.

International Journal of Innovative Research in Computer and Communication Engineering

 Vol. 1, Issue 4, June 2013
II. TENSORFACES

We have identified the analysis of an ensemble of images resulting from the confluence of multiple factors related to scene structure, illumination, and viewpoint as a prob-lem in multilinear algebra [14]. Within this mathematical framework, the image ensemble is represented as a higher-dimensional tensor. This image data tensor D must be decomposed in order to separate and parsimoniously repre-sent the constituent factors. To this end, we prescribe the N mode SVD algorithm, a multilinear extension of the con-ventional matrix singular value decomposition (SVD).

Appendix A overviews the mathematics of our multilin-ear analysis approach and presents the N-mode SVD algorithm. In short, an order $N>2$ tensor or N-way array D is an N-dimensional matrix comprising N spaces. N-mode SVD is a "generalization" of conventional matrix (i.e., 2-mode) SVD. It orthogonalizes these N spaces and decom-poses the tensor as the mode-n product, denoted x_{n} (see Equation (4) in Appendix A), of N-orthogonal spaces, as follows:

$$
\begin{equation*}
D=Z \times_{1} \mathbf{U}_{1} \times_{2} \mathbf{U}_{2} \ldots x_{n} \mathbf{U}_{n} \ldots x_{N} \mathbf{U}_{N} \tag{1}
\end{equation*}
$$

Tensor Z, known as the core tensor, is analogous to the diagonal singular value matrix in conventional matrix SVD (although it does not have a simple, diagonal structure). The core tensor governs the interaction between the mode matri-ces \mathbf{U}_{1}, \ldots, \mathbf{U}_{N}. Mode matrix \mathbf{U}_{n} contains the orthonor-mal vectors spanning the column space of matrix $\mathbf{D}_{(n)}$ re-sulting from the moden flattening of D (see Appendix A).

The multilinear analysis of facial image ensembles leads to the TensorFaces representation. To illustrate Tensor-Faces, we employed in our experiments a portion of the Weizmann face image database: 28 male subjects pho-tographed in 5 viewpoints, 3 illuminations, and 3 expres-sions. Using a global rigid optical flow algorithm, we aligned the original $512 \times$ 352 pixel images relative to one reference image. The images were then decimated by a fac-tor of 3 and cropped as shown in Fig. 1, yielding a total of 7943 pixels per image within the elliptical cropping win- dow.

Our facial image data tensor D is a $28 \times 5 \times 3 \times 3 \times 7943$ tensor. Applying multilinear analysis to D, using our N-mode decomposition algorithm with $N=5$, we obtain

$$
D=Z \times 1 \underbrace{}_{\text {popple } x 2} \mathbf{U}_{\text {views } x 3} \mathbf{U}_{\text {illums } x 4} \underset{\text { expeses } x 5}{U} \underset{\text { pixels, }}{\mathbf{U}}
$$

where the $28 \times 5 \times 3 \times 3 \times 7943$ core tensor Z governs the interaction between the factors represented in the 5 mode matrices: The 28×28 mode matrix $\mathbf{U}_{\text {people }}$ spans the space of people parameters, the 5×5 mode matrix $\mathbf{U}_{\text {views }}$ spans the space of viewpoint parameters, the 3×3 mode matrix $\mathbf{U}_{\text {illums }}$ spans the space of illumination parameters and the 3×3 mode matrix $\mathbf{U}_{\text {expres }}$ spans the space of expression parame-ters. The 7943×1260 mode matrix $\mathbf{U}_{\text {pixels }}$ orthonormally spans the space of images. Reference [14] discusses the at-tractive properties of this analysis, some of which we now summarize.

Figure 1: The facial image database (28 subjects $\times 45$ images per subject). (a) The 28 subjects shown in expression 2 (smile), viewpoint 3 (frontal), and illumination 2 (frontal). (b) The full image set for subject 1. Left to right, the three panels show images captured in illuminations 1,2 , and 3 . Within each panel, images of expressions 1,2 , and 3 are shown horizontally while images from viewpoints 1 , 2 , 3 , 4 , and 5 are shown vertically. The image of subject 1 in (a) is the image situated at the center of (b).

International Journal of Innovative Research in Computer and Communication Engineering

Vol. 1, Issue 4, June 2013

Our multilinear analysis subsumes linear, PCA analy-sis. As shown in Fig. 2(a), each column of $\mathbf{U}_{\text {pixels }}$ is an "eigenimage". These eigenimages are identical to conven-tional eigenfaces [9, 12], since the former were computed by performing an SVD on the mode- 5 flattened data ten-sor D which yields the matrix $\mathbf{D}_{\text {(pixels) }}$. The advantage of multilinear analysis, however, is that the core tensor Z can transform the eigenimages in $\mathbf{U}_{\text {pixels }}$ into TensorFaces, which represent the principal axes of variation across the various modes (people, viewpoints, illuminations, expressions) and represents how the various factors interact with each other to create the facial images. This is accomplished by simply forming the product $Z \times 5 \mathbf{U}_{\text {pixels }}$. By contrast, the PCA basis vectors or eigenimages represent only the principal axes of variation across images.

Our facial image database comprises 45 images per per-son that vary with viewpoint, illumination, and expres-sion. PCA represents each person as a set of 45 vector-valued coefficients, one from each image in which the per-son appears. The length of each PCA coefficient vector is $28 \times 5 \times 3 \times 3=1260$. By contrast, multilinear analy-sis enables us to represent each person with a single vector
coefficient of dimension 28 relative to the bases comprising the $28 \times 5 \times 3 \times 3 \times 7943$ tensor
(3)

Figure 2: Some of the TensorFaces basis vectors resulting from the multilinear analysis of the facial image data tensor D. (a) The first 10 PCA eigenvectors (eigenfaces), which are contained in the mode matrix $\mathbf{U}_{\text {pixels }}$, and are the principal axes of variation across all images. (b,c,d) A partial visualization of the $28 \times 5 \times 3 \times 3 \times$ 7943 tensor $B=Z \times_{2} \mathbf{U}_{\text {views }} \times{ }_{3} \mathbf{U}_{\text {illums }} \times \times_{4} \mathbf{U}_{\text {expres }} \times_{5} \mathbf{U}_{\text {pixels }}$, which defines 45 different bases for each combination of viewpoints, il-lumination and expressions, as indicated by the labels at the top of each array. These bases have 28 eigenvectors which span the peo-ple space. The eigenvectors in any particular row play the same role in each column. The topmost row across the three panels de-picts the average person, while the eigenvectors in the remaining rows capture the variability across people in the various viewpoint, illumination, and expression combinations.
some of which are shown in Fig. 2(b-d). Each column in the figure is a basis matrix that comprises 28 eigenvectors. In any column, the first eigenvector depicts the average per-son and the remaining eigenvectors capture the variability across people, for the particular combination of viewpoint, illumination, and expression associated with that column.

III. RECOGNITION USING TENSORFACES

We propose a recognition method based on multilinear anal-ysis analogous to the conventional one for linear PCA anal-ysis. In the PCA or eigenface technique, one decomposes a data matrix \mathbf{D} of known "training" facial images \mathbf{d}_{d} into a reduceddimensional basis matrix $\mathbf{B}_{\text {PCA }}$ and a matrix \mathbf{C} con-taining a vector of coefficients \mathbf{c}_{d} associated with each vec-torized image \mathbf{d}_{d}. Given an unknown facial image \mathbf{d}, the projection operator $\mathbf{B}^{-}{ }_{\text {PCA }}{ }^{1}$ linearly projects this new image into the reduceddimensional space of image coefficients. Our multilinear facial recognition algorithm performs the TensorFaces

International Journal of Innovative Research in Computer and Communication Engineering

 Vol. 1, Issue 4, June 2013decomposition (2) of the tensor D of vec-torized training images \mathbf{d}_{d}, extracts the matrix $\mathbf{U}_{\text {people }}$ which contains row vectors $\mathbf{c}^{T}{ }_{p}$ of coefficients for each person p, and constructs the basis tensor B according to (3). We in-dex into the basis tensor for a particular viewpoint v, illu-mination i, and expression e to obtain a subtensor $B_{v, i, e}$ of dimension $28 \times 1 \times 1 \times 1 \times 7943$. We flatten $B_{V, i, e}$ along the people mode to obtain the 28×7943 matrix $\mathbf{B}_{v, i, e(\text { people })}$. Note that a specific training image \mathbf{d}_{d} of person p in view-point v, illumination i, and expression e can be written as
$\mathbf{d}_{p, v, i, e}=\mathbf{B}^{T()} \mathbf{c}_{p}$; hence, $\mathbf{c}_{p}=\mathbf{B}^{-T()} \mathbf{d}_{p, v, i, e .} v, i, e$ poople v, i, e popple
Now, given an unknown facial image \mathbf{d}, we use the pro-jection operator $\left.\mathbf{B}^{-}{ }_{v, i, e}{ }^{T(}{ }_{\text {people }}\right)$ to project \mathbf{d} into a set of can-
didate coefficient vectors $\left.\mathbf{c}_{v, i, e}=\mathbf{B}^{-}{ }_{v, i, e}{ }^{T(}{ }_{\text {people }}\right) \mathbf{d}$ for every v, i, e combination. Our recognition algorithm compares each
$\mathbf{c}_{v, i, e}$ against the person-specific coefficient vectors \mathbf{c}_{p}. The best matching vector \mathbf{c}_{p}-i.e., the one that yields the small-est value of $/ / \mathbf{c}_{v, i, e}-\mathbf{c}_{p} / /$ among all viewpoints, illumina-tions, and expressions-identifies the unknown image \mathbf{d} as portraying person p.

As the following table shows, in our preliminary ex-periments with the Weizmann face image database, TensorFaces yields significantly better recognition rates than eigenfaces in scenarios involving the recognition of people imaged in previously unseen viewpoints (row 1) and under a previously unseen illumination (row 2):

Recognition Experiment	PCA	TensorFaces
Training: 23 people, 3 viewpoints $(0, \pm 34), 4$ illuminations Testing: 23 peopple, 2 viewpoints $(\pm 17), 4$ illuminations (center, left, right, left+right $)$	61%	80%
Training: 23 people, 5 viewpoints $(0, \pm 17, \pm 34), 3$ illuminations Testing: 23 people, 5 viewpoints $(0, \pm 17, \pm 34), 4$ th illumination	27%	88%

IV. CONCLUSION

We have approached the analysis of an collection of facial images resulting from the confluence of multiple factors related to scene structure, illumination, and viewpoint as a problem in multilinear algebra in which the image en-semble is represented as a higher-dimensional tensor. Us-ing the " N-mode SVD" algorithm, a multilinear exten-sion of the conventional matrix singular value decompo-sition (SVD), this image data tensor is decomposed in or-der to separate and parsimoniously represent the constituent factors. Our analysis subsumes as special cases the sim-ple linear (1-factor) analysis associated with conventional SVD and principal components analysis (PCA), as well as the incrementally more general bilinear (2-factor) anal-ysis that has recently been investigated in computer vi-sion. Our completely general multilinear approach accommodates any number of factors by exploiting tensor machin-
ery and, in our experiments, it yields significantly better recognition rates than standard eigenfaces.

We plan to investigate dimensionality reduction in con-junction with TensorFaces (refer to the final paragraph $=\Rightarrow$ of Appendix A). See [13] in these proceedings for the ap-plication of multilinear analysis to the recognition of people and actions from human motion data.

A Multilinear Analysis

A tensor is a higher order generalization of a vector (first order tensor) and a matrix (second order tensor). Tensors are multilinear mappings over a set of vector spaces. The order of tensor $A \in \mathbb{R}^{l_{1} \times I_{2} \times \ldots \times I_{N}}$ is N. Elements of denoted as ${ }_{A_{i_{1} \ldots i_{n} \ldots i_{N}}}$ or $a_{i_{1} \ldots i_{n \ldots i_{N}}}$, where mode-1 vectors and row vectors as mode-2 vectors. The mode- n vectors of an $\mathrm{N}^{\text {th }}$ order tensor A are the I_{n} dimensional vectors obtained from A by vary-ing index i_{n} while keeping the other indices fixed. The mode- n vectors

International Journal of Innovative Research in Computer and Communication Engineering

 Vol. 1, Issue 4, June 2013are the column vectors of matrix $\mathbf{A}_{(n)} \in$

A generalization of the product of two matrices is the product of a tensor and a matrix. The mode-n product

$J_{n} \times I_{n+1} \times \ldots \times I_{N}$ tensor

$$
\begin{aligned}
& \left(A \times n \stackrel{\text { M }}{)_{i_{1} \ldots i_{n-1} i_{n} i_{n+1} \ldots i_{N}}=} \quad \underset{i_{n}}{ } \quad a_{i_{1} \ldots i_{n-1} i_{n} i_{n+1} \ldots i_{N}} m_{j_{n} i_{n}} .\right.
\end{aligned}
$$

The mode- n product can be expressed in terms of flattened matrices as $\mathbf{B}_{(n)}=\mathbf{M} \mathbf{A}_{(n)} .{ }^{1}$
Our N-mode SVD algorithm for decomposing D accord-ing to equation (1) is:

1. For $n=1, \ldots, N$, compute matrix \mathbf{U}_{n} in (1) by com-puting the $S V D$ of the flattened matrix $\mathbf{D}_{(n)}$ and set-ting \mathbf{U}_{n} to be the left matrix of the SVD. ${ }^{2}$
2. Solve for the core tensor as follows:

$$
\begin{equation*}
\mathbf{Z}=D x_{1} \mathbf{U}^{T}{ }_{1} \times_{2} \mathbf{U}^{T} \ldots x_{n} \mathbf{U}_{n}^{T} \ldots x_{N} \mathbf{U}^{T}{ }_{N} . \tag{5}
\end{equation*}
$$

2 The mode-n product of a tensor and a matrix is a special case of the in-ner product in multilinear algebra and tensor analysis. Note that for tensors
and matrices of the appropriate sizes, $A x_{m} \mathcal{U} x_{n} \mathcal{V}=A x_{n} \mathcal{V} x_{m} \mathcal{U}$ and $\left(A x_{n} \mathcal{U}\right) x_{n} \mathcal{V}=A x_{n}(\mathcal{V} \mathcal{U})$.
${ }^{2}$ When $\mathcal{D}_{(n)}$ is a non-square matrix, the computation of \mathcal{U}_{n} in the singular value decomposition (SVD) $\mathcal{D}_{(n)}=\mathcal{U}_{n} \sum_{T} \mathbf{V}_{n}{ }^{\top}$ can be per-formed efficiently, depending on which dimension of $\mathcal{D}_{(n)}$ is smaller, by decomposing either $\mathcal{D}_{(n)} \mathcal{D}^{\top}{ }_{(n)}=$ $\mathcal{U}_{n} \Sigma^{2} \mathcal{U}^{\dagger}{ }_{n}$ and then computing
$\mathcal{V}_{n}{ }^{T}=\boldsymbol{\Sigma}^{+} \mathcal{U}^{T}{ }_{n} \mathcal{D}_{(n)}$ or by decomposing $\mathcal{D}^{T}{ }_{(n)} \mathcal{D}_{(n)}=\mathcal{V}_{n} \boldsymbol{\Sigma}^{2} \mathcal{V}_{n}{ }^{T}$ and then computing $\mathcal{U}_{n}=\mathcal{D}_{(n)} \mathcal{V}_{n} \boldsymbol{\Sigma}^{+}$.
Dimensionality reduction in matrix principal component analysis is obtained by truncation of the singular value decomposition (i.e., deleting eigenvectors associated with the smallest eigenvalues). Unfortunately, this does not have a trivial multilinear counterpart. According to [3], a useful generalization to tensors involves an optimal rank- $\left(R_{1}, R_{2}, \ldots, R_{N}\right)$ approximation which iteratively opti-mizes each of the modes of the given tensor, where each optimization step involves a best reduced-rank approxima-tion of a positive semi-definite symmetric matrix. This tech-nique is a higher-order extension of the orthogonal iteration for matrices.

REFERENCES

[1] R. Chellappa, C.L. Wilson, and S. Sirohey. Human and ma-chine recognition of faces: A survey. Proceedings of the IEEE, 83(5):705-740, May 1995.
[2] L. de Lathauwer, B. de Moor, and J. Vandewalle. A multilin-ear singular value decomposition. SIAM Journal of Matrix Analysis and Applications, 21(4):1253-1278, 2000.
[3] L. de Lathauwer, B. de Moor, and J. Vandewalle. On the best rank-1 and rank- $\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ approximation of higher-order tensors. SIAM Journal of Matrix Analysis and Appli-cations, 21(4):1324-1342, 2000.
[4] A. Kapteyn, H. Neudecker, and T. Wansbeek. An approach to n-mode component analysis. Psychometrika, 51(2):269-275, June 1986.
[5] T. G. Kolda. Orthogonal tensor decompositions. SIAM J. on Matrix Analysis and Applications, 23(1):243-255, 2001.
[6] J. R. Magnus and H. Neudecker. Matrix Differential Calcu-lus with Applications in Statistics and Econometrics. John Wiley \& Sons, New York, New York, 1988.
[7] D.H. Marimont and B.A. Wandell. Linear models of surface and illuminance spectra. J. Optical Society of America, A., 9:1905-1913, 1992.
[8] A. Pentland, B. Moghaddam, and T. Starner. View-based and modular eigenspaces for face recognition. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 1994.
[9] L. Sirovich and M. Kirby. Low dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A., 4:519-524, 1987.
[10] J. B. Tenenbaum and W. T. Freeman. Separating style and content with bilinear models. Neural Computation, 12:1247-1283, 2000.
[11] L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31:279-311, 1966.
[12] M. A. Turk and A. P. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1):71-86, 1991.
[13] M.A.O. Vasilescu. Human motion signatures: Analysis, syn-thesis, recognition. In Proc. Int. Conf. on Pattern Recogni-tion, Quebec City, August 2002. These proceedings.
[14] M.A.O. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensembles: Tensorfaces. In Proc. European Conf. on Computer Vision (ECCV 2002), Copenhagen, Denmark, May 2002. In press.

