

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 2, Febraury 2014

Copyright to IJIRCCE www.ijircce.com 3232

Dynamic Resource Allocation in Cloud

Environment

M.Vanitha, Ar.Sivakumaran, S.Shiny Swarna Sugi

Assistant Professor, Department of Computer Science and Engineering, Karpagam College of Engineering

Coimbatore, Tamilnadu, India.

Associate Professor, Department of Computer Science and Engineering, Karpagam College of Engineering,

Coimbatore, Tamilnadu, India

Assistant Professor, Department of Computer Science and Engineering, Karpagam College of Engineering

Coimbatore, Tamilnadu, India

ABSTRACT: Cloud computing allows business customers to scale up and down their resource usage based on needs.

Many of the touted gains in the cloud model come from resource multiplexing through virtualization technology. In this

paper, we present a system that uses virtualization technology to allocate data center resources dynamically based on

application demands and support green computing by optimizing the number of servers in use. We introduce the

concept of “skewness” to measure the unevenness in the multidimensional resource utilization of a server. By

minimizing skewness, we can combine different types of workloads nicely and improve the overall utilization of server

resources. We develop a set of heuristics that prevent overload in the system effectively while saving energy used.

Trace driven simulation and experiment results demonstrate that our algorithm achieves good performance.

KEYWORDS: cloud computing; green computing.

I. INTRODUCTION

 Cloud Computing is a marketing term for technologies that provide computation, software, data access, and

storage services that do not require end-user knowledge of the physical location and configuration of the system that

delivers the services. A parallel to this concept can be drawn with the electricity grid, wherein end-users consume

power without needing to understand the component devices or infrastructure required to provide the service. Cloud

Computing is now-a-days being used for on demand storage and processing power. It allows the leasing of resources to

improve the locally available computational capacity when necessary. When using a cloud, the user accesses computing

resources as general utilities that can be leased and released. The ubiquitous access to cloud resources easily enables the

simultaneous use of different clouds.

II. CREATION OF CLOUD NETWORK USING CLOUDSIM

 A simulation toolkit enables modeling and simulation of Cloud computing systems and application provisioning

environments. The CloudSim toolkit supports both system and

behavior modeling of Cloud system components such as data centers, virtual machines (VMs) and resource

provisioning policies. It implements generic application provisioning techniques that can be extended with ease and

limited effort. Currently, it supports modeling and simulation of Cloud computing environments consisting of both

single and inter-networked clouds (federation of clouds). Moreover, it exposes custom interfaces for implementing

policies and provisioning techniques for allocation of VMs under inter-networked Cloud computing scenarios. In cloud

initialization module, the creation of cloud users, datacenters and cloud virtual machines as per our requirement. Nephe

Job manager, Cloud controller also created. The Job Manager receives the client’s jobs, is responsible for scheduling

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 2, Febraury 2014

Copyright to IJIRCCE www.ijircce.com 3233

them, and coordinates their execution. It is capable of communicating with the interface the cloud operator provides to

control the instantiation of VMs. The interface is called the Cloud Controller. By means of the Cloud Controller the Job

Manager can allocate or deallocate VMs according to the current job execution phase. The term instance type will be

used to differentiate between VMs with different hardware characteristics.

III.PARALLELIZATION AND SCHEDULING STRATEGIES USING EXECUTION GRAPH

 Nephele separates the Execution Graph into one or more so-called Execution Stages. An Execution Stage must

contain at least one Group Vertex. Its processing can only start when all the subtasks included in the preceding stages

have been successfully processed. Based on this Nephele’s scheduler ensures the following three properties for the

entire job execution: First, when the processing of a stage begins, all instances required within the stage are allocated.

Second, all subtasks included in this stage are set up and ready to receive records. Third, before the processing of a new

stage, all intermediate results of its preceding stages are stored in a persistent manner. Hence, Execution Stages can be

compared to checkpoints. In case a sufficient number of resources cannot be allocated for the next stage, they allow a

running job to be interrupted and later on restored when enough spare resources have become available. Before

processing a new Execution Stage, the scheduler collects all Execution Instances from that stage and tries to replace

them with matching cloud instances. If all required instances could be allocated the subtasks are distributed among

them and set up for execution. In case of task parallelization, when a Group Vertex contains more than one Execution

Vertex, the developer of the consuming task can implement an interface which determines how to connect the two

different groups of subtasks. Nephele requires all edges of an Execution Graph to be replaced by a channel before

processing can begin. The type of the channel determines how records are transported from one subtask to the other.

Currently, Nephele features three different types of channels, which all put different constrains on the Execution Graph.

IV.PARALLELIZATION AND SCHEDULING STRATEGIES USING ON-LINE PREEMPTIVE

SCHEDULING

 In the preemptive scheduling module implements the parallelization and scheduling strategies using on line

preemptive scheduling. There are five main parts in the scheduling. They are the preemption checking, feasibility

checking, task selecting, scheduling point checking, and critical point checking. When new tasks are added in to ready

queue, not matter whether there is preemption or not, the feasibility checking will work to check if the new ready queue

is feasible or not. If any task cannot meet the requirement, it will be removed from the ready queue. Scheduling point

checking makes sure all the left tasks in the ready queue will have a qualified expected accrued utility density at the

expected finish time of current running task. The task selecting has the policy that always select the highest expected

accrued utility density task to run when the server is idle. The critical point checking will always monitor the current

running task’s state to prevent the server wasting time on the non-profitable running task. The preemption checking

works when there is a prosperous task wants to preempt the current task. The combination of these parts guarantees to

judiciously schedule the tasks for achieving high accumulated total utilities. It is worthy to talk more about the

preemption checking part in details; because improper aggressive preemption will worsen the scheduling performance.

If a task can be finished successfully before its deadline even in its worst case, the scheduling will protect the current

running task from being preempted by any other tasks. Otherwise, if a prosperous task has an expected accrued utility

density which is larger than the current running task’s conditional expected accrued utility density by at least a value

equals to the pre-set preemption threshold, the preemption is permitted.

V.PARALLELIZATION AND SCHEDULING STRATEGIES USING ON-LINE NON PREEMPTIVE

SCHEDULING

 In non-preemptive scheduling module, the parallelization and scheduling strategies using on line non-pre emptive

scheduling. Non-preemptive scheduling algorithm of real-time services based on a task model similar to the profit and

penalty model introduced. In addition to the careful choice of the ready task to run, scheduling method judiciously

discards pending requests and aborts task executions, and therefore can achieve better performance. on-line non-

preemptive scheduling solution to address the problem defined in the previous section. Since the execution of a task

may gain positive profit or suffer penalty and thus degrade the overall computing performance, judicious decisions

must be made with regard to executing a task, dropping or aborting a task, and when to drop or abort a task. The

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 2, Febraury 2014

Copyright to IJIRCCE www.ijircce.com 3234

rationale of our approach is very intuitive, i.e. a task can be accepted and executed only when it is statistically

promising to bring positive gain, and discarded or aborted otherwise.

VI.PERFORMANCE EVALUATION

 Average resource utilization, Total profit, total utility and total penalty are the performance metrics in

performance evaluation module. These performances are evaluated under different thresholds and with various

numbers of resources and users. It is interesting to see that the highest utility does not always occur at the point when

the threshold equals zero, the highest utility will seldom occur at the point with neither the lowest nor the highest

threshold value. The lower the threshold, the more tasks can be accepted to the system and get executed. This helps to

improve the value of total profit. However, having more tasks accepted into ready queue may potentially increase the

penalty cost. On the contrary, using a higher threshold helps to control the potential penalty but may limit the total

profit that can be obtained.

VII.RESULTS AND DISCUSSION

Figure Average Instance Utilization Vs Time

The utilization of each instance has been monitored with the UNIX command top and is broken down into the amount

of time the CPU cores spent running the respective data processing frame work (USR), the kernel and its processes

(SYS), and the time waiting for I/O to complete (WAIT). Here if the time is increased, the average instance utilization

of four methods is varied. The variation depends on time. Initially it increased the utilization then the rate is varied

gradually.

Figure. Average Network Traffic Among Instances Vs Time

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 2, Febraury 2014

Copyright to IJIRCCE www.ijircce.com 3235

The comparison of average network traffic among instances with time is explained in the above graph. The utilization

of each instance has been monitored with the UNIX command top and is broken down into the amount of time the CPU

cores spent running the respective data processing frame work (USR), the kernel and its processes (SYS), and the time

waiting for I/O to complete (WAIT). Here if the time is increased, the average network traffic among instances of four

methods is varied. The variation depends on time. Initially it increased the network traffic then the rate is varied

gradually.

VIII.CONCLUSION

The challenges and opportunities for efficient parallel data processing in cloud environments and Nephele, the first data

processing framework to exploit the dynamic resource provisioning offered by today’s IaaS clouds are discussed. The

Nephele’s basic architecture and performance comparison to the well-established data processing framework Hadoop

are implemented. The performance evaluation gives a first impression on how the ability to assign specific virtual

machine types to specific tasks of a processing job, as well as the possibility to automatically allocate/deallocate virtual

machines in the course of a job execution, can help to improve the overall resource utilization and, consequently,

reduce the processing cost.

REFERENCES

[1] Amazon Web Services LLC, “Amazon Elastic Compute Cloud (Amazon EC2),” http://aws.amazon.com/ec2/, 2009.

[2] Amazon Web Services LLC, “Amazon Elastic MapReduce,” http://aws.amazon.com/elasticmapreduce/, 2009.
[3] Amazon Web Services LLC, “Amazon Simple Storage Service,” http://aws.amazon.com/s3/, 2009.

[4] D. Battre´, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke, “Nephele/PACTs: A Programming Model and Execution Framework for

Web-Scale Analytical Processing,” Proc. ACM Symp. Cloud Computing (SoCC ’10), pp. 119-130, 2010.
[5] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou, “SCOPE: Easy and Efficient Parallel Processing of Massive

Data Sets,” Proc. Very Large Database Endowment, vol. 1, no. 2, pp. 1265-1276, 2008.

[6] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D.S. Parker, “Map- Reduce-Merge: Simplified Relational Data Processing on Large Clusters,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, 2007.

[7] M. Coates, R. Castro, R. Nowak, M. Gadhiok, R. King, and Y. Tsang, “Maximum Likelihood Network Topology Identification from Edge-Based

Unicast Measurements,” SIGMETRICS Performance Evaluation Rev., vol. 30, no. 1, pp. 11-20, 2002.
[8] R. Davoli, “VDE: Virtual Distributed Ethernet,” Proc. Testbeds and Research Infrastructures for the Development of Networks and Communities,

Int’l Conf., pp. 213-220, 2005.

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” Proc. Sixth Conf. Symp. Opearting Systems Design and
Implementation (OSDI ’04), p. 10, 2004.

[10] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G.B. Berriman, J. Good, A. Laity, J.C. Jacob, and D.S.

Katz, “Pegasus: A Framework for Mapping Complex Scientific Workflows onto Distributed Systems,” Scientific Programming, vol. 13, no. 3, pp.
219-237, 2005.

[11] T. Dornemann, E. Juhnke, and B. Freisleben, “On-Demand Resource Provisioning for BPEL Workflows Using Amazon’s Elastic Compute
Cloud,” Proc. Ninth IEEE/ACM Int’l Symp. Cluster Computing and the Grid (CCGRID ’09), pp. 140-147, 2009.

[12] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,” Int’l J. Supercomputer Applications, vol. 11, no. 2, pp. 115-128,

1997.
[13] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-G: A Computation Management Agent for Multi- Institutional Grids,”

Cluster Computing, vol. 5, no. 3, pp. 237-246, 2002.

[14] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks,” Proc.
Second ACM SIGOPS/EuroSys European Conf. Computer Systems (EuroSys ’07), pp. 59-72, 2007.

[15] A. Kivity, “Kvm: The Linux Virtual Machine Monitor,” Proc. Ottawa Linux Symp. (OLS ’07), pp. 225-230, July 2007.

BIOGRAPHY

 1. Prof.M.VANITHA received her M.E degree in Computer Science and Engineering in V.L.B. Janakiammal College of

Engineering and Technology, Coimbatore, Tamilnadu. . She is at present working as a Assistant Professor in department of

Computer Science and Engineering in Karpagam College of Engineering, Coimbatore, Her area of interest is Cloud Computing ,

Data Mining.

2.Prof. AR. Sivakumaran received his M.C.A degree from R.V.S.College of Engineering, Dindigul and M.Tech. degree in

computer science and engineering from Motilal Nehru National Institute of Technology, Allahabad. He is at present working as a

Associate Professor in department of Computer Science and Engineering in Karpagam College of Engineering, Coimbatore, Tamil

Nadu, India. His field of interest is Data Mining, Cloud Computig and Bio Informatics.

http://www.ijircce.com/

