

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 4, Issue 12, December 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0412052 21639

A Survey on Big Data Analytics and
MapReduce Operations on Distributed

Systems

Ajinkya Kunjir, Basil Shaikh

UG Student, Dept. of Computer Engineering, M.E.S College of Engineering, Pune, India

UG Student, Dept. of Computer Engineering, M.E.S College of Engineering, Pune, India

ABSTRACT: MapReduce is a programming model used for generating and processing large datasets and terabytes of
data across multiple clusters. There are two functions of this model ‘Map’ and ‘Reduce’.‘Map’ function is used to
generate intermediate key and value pair, and ‘Reduce’ function is used to merge all the key-value pairs
generated.Programs and snippet written using this framework model can be executed on parallel and distributed
platforms. The characteristics of this model such as analysis and fault tolerance allows programmers to implement their
programs on distributed and parallel programs. This paper outlines the operations of MapReducemodel and big data
analytics on the distributed systems. Big data is any data that has potential to be mined. Most of the data is unstructured
and we need a way to manage this data or rather generate important information. MapReduce was invented by Google
in 2004 for running applications across massive datasets, on huge clusters of machines comprising of commodity
hardware capable of processing terabytes of data. It implements this computational paradigm used in functional
programming. In simple terms its a divide and conquer technique where the origin data is divided into self contained
units of work, each unit is executed independently on any node in the cluster, a key to Map/Reduce programming
model.

KEYWORDS: Big data ,Information retrieval , Data visualization, MapReduce, data analysis, Distributed databases.

I. INTRODUCTION

Over the past five years, the developers and researchers at Google have implemented thousands of special-purpose
computations that process huge amounts of raw data, such as formatted documents, web request, server logs, etc., to
compute various kinds of derived data, such as various representations of the graphical structure of web documents,
summaries of the number of pages crawled per host, the set of most frequent queries in a day, etc. Most such
computations are conceptually straightforward. However, the input data is usually large and the computationshave to be
distributed across hundreds or thousands of machines in order to finish in a feasible amount of time. The issues of how
to distribute and parallelize the computation, distribute the data, and handle failures conspire to run the original easy
computation with large amounts of complex code to deal with these issues.
Jefferey Dean and Sanjay Ghemawat in their paper of ‘Google Inc’ stated tha tthe reaction to this complexity, there
was designed a new abstraction that allows us to express the simple computations we were trying to perform but hides
the noisy details of parallelization, fault-tolerance, data distribution and load balancing in a library[1]. The abstraction
was inspired by the map and reduce primitives present in Lisp and many other functional languages.] Howard Karlo�
et.al in their paper derived a theory, that most of the computations involved applying a map operation to each logical
“record” in our input in order to compute a set of intermediate key/value pairs, and then applying a reduce operation to
all the values that shared the same key, in order to combine the derived data appropriately[2]. The utilization of a
functional model with user specified map and reduce operations allows us to parallelize large computations easily and
to use re-execution as the primary mechanism for fault tolerance. The major contributionsof this work were a simple
and powerful linterface that enables automatic parallelization and distribution of large-scale computations, combined
with an implementation of this interface that achieves highper for mance on large clusters of commodity PCs.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 4, Issue 12, December 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0412052 21640

Section2describesthe previous researches, basic program mingmode lsand gives several examples. Section 3 describes
the operations of MapReduce, and the architecture of MapReduce systems. Section 4 explains about big data and
analysis use to handle big data in real time and business use. Section 5discusses related and futurework.

II. RELATED WORK
A. BACKGROUND AND RESEARCH

The MapReduce framework was originally developed at Google , but has recently seen wide adoption across all the
platforms and has become the usual standard for large scale data analysis. Publicly available statistics indicate that
MapReduce is used to process more than 10 petabytes of information per day at Google alone. The Wikipedia source
from the internet provided information about anopensourceversion, calledHadoop, which is also a data handling
framework hasrecently been developed, and is seeing increased adoption both in industry and academia[3]. Over 80
companies use Hadoop including Yahoo!, New York Stock Market, Facebook, Flash, and IBM. Moreover, Amazon’s
Elastic Compute Cloud(EC2)isaHadoopclusterwhereuserscanupload large data sets and rent processor time[4]. In
addition, at least seven universities (including CMU, Cornell, and the University of Maryland) are using Hadoop
clusters for research. Hadoop and MapReduce together can solve various issues of computing across distributed and
parallel platforms.MapReduce can also be implemented using efficient scheduling schemes and also operations across
all the nodes in the distributed systems.

B. PROGRAMMING MODELS: A SURVEY
The computation of MapReduce takes a plethora of input key/value pairs, and produces a plethora of output key/value
pairs. The accesser of the MapReduce library expresses the computation as two functions: Map and Reduce. Map, a
user defined function takes an input pair and produces a set of intermediate key/value pairs. The MapReduce library
groups together all intermediate values associated with the same intermediate key and passes them to the Reduce
function. The Reduce function, also written by the user, accepts an intermediate key and a set of values for that key. It
combines together these values to form a possibly smaller set of values. Ideally, just zero or one output value is
produced per Reduce iteartion. The intermediate values are supplied to the user’s reduce function via an iterator. This
allows us to handle lists of values that are too large to fit in memory. Also this model is efficient and usable. usable.

 Mappers and Reducers:
Key-value pairs constitute the basic data structure in MapReduce. J. Feldmanet.al in their edition of 2008 gave a brief
description about the keys and values, where it was stated that Keys and values may be primitives such as integers,
floating point values, double units, strings, and raw bytes, or they may be arbitrarily complex structures likelists,
tuples, associative arrays, etc[5]. Programmers typically need to define their own custom data types, although a number
of libraries such as Protocol Bu�ers, Thrift, and Avro simplify the task. Part ofthedesignofMapReduce
algorithmsinvolvesimposingthekey-valuestructure on arbitrary datasets. For a set of web pages, keys may be URLs and
values may be the actual HTML content. For a graph, keys may represent node identifiers(id’s) and values may
contain the adjacency lists of those nodes. In few algorithms, input keys are not particularly meaningful and are simply
ignored during processing, while in other cases input keys are used to uniquely identify a datum (such as a record id).
Previously, we discussed the role of complex keys and values in the design of various algorithms. In MapReduce, the
programmer defines a mapper and a reducer with the following signatures:

map: (k1,v1)→[(k2,v2)] eq.(1)
reduce: (k2,[v2])→[(k3,v3)]eq.(2)

As we can see from equation (1) and (2) which are the conventions for map and reduce which also states that the input
to a MapReduce job starts as data stored on the underlying distributed file system. The mapper is applied to every input
key-value pair to generate an arbitrary number of intermediate key-value pairs. The reducer is applied to all values
associated with the same intermediate key to generate output key-value pairs. Implicit between the map and reduce
phases is a distributed “group by” operation on intermediate keys. Intermediate data arrive at each reducer in order,
sorted by the key. However, no ordering relationship is guaranteed for keys across di�erent reducers. Output key-value
pairs from each reducer are written back onto the distributed file.Theoutputendsup in ‘r’ filesonthedistributedfilesystem,
where ‘r’ is the number of reducers. For the most part, there is no need to consolidate reducer output, since the r files
often serve as input to yet another MapReduce job. Figure 1 illustrates this two-stage processing structure.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 4, Issue 12, December 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0412052 21641

Fig 1 : Mapper and Reducer

 Partitioners and Combiners :
We have so far seen a simplified view of MapReduce. There are two additional components that complete the
programming model:partitioners and combiners. Partitioners are responsible for dividing up the intermediate key space
and assigning intermediate key-value pairs to reducers. In simple words, the partitioner specifies the task to which an
intermediate key-value pair must be copied. Within each reducer, keys are processed in sorted. The simplest partitioner
involves computing the hash value of the key and then taking the mod of that value with the number of reducers. This
assigns approximately the same number of keys to each reducer. Note, however, that the partitioner only considers the
key and ignores the value—therefore, a roughly-even partitioning of the key space may nevertheless yield large
di�erences in the number of key-values pairs sent to each reducer. This imbalance in the amount of data associated
with each key is relatively common in many text processing applications due to the Zipfian distribution of word
occurrences. Combiners are an optimization in MapReduce that allow for local aggregation
beforetheshu�eandsortphase.We can motivate the need for combinersby considering the Figure 2, which emits a key-
value pair for each word in the collection. Furthermore, all these key-value pairs need to be copied across the network,
and so the amount of intermediate data will be larger than the input collection itself. This is clearly ine�cient. One
solution is to perform local aggregation on the output of each mapper, i.e., to compute a local count for a word over all
the documents processed by the mapper. With this modification, the number of intermediate key-value pairs will be at
most the number of unique words in the collection times the number of mappers. The combiner in MapReduce supports
such an optimization. One can think of combiners as “mini-reducers” that take place on the output of the mappers, prior
to the shu�e and sort phase. Each combiner operates in isolation and therefore does not have access to intermediate
output from other mappers. The combiner is provided keys and values associated with each key. Critically, one cannot
assume that a combiner will have the opportunity to process all values associated with the same key. The combiner can
emit any number of key-value pairs, but the keys and values must be of the same type as the mapper output. In cases
where an operation is both associative and commutative (e.g., addition or multiplication), reducers can directly serve as
combiners. In general, however, reducers and combiners are not interchangeable.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 4, Issue 12, December 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0412052 21642

Fig 2. Partitioners and Combiners

C. MAPREDUCE COMPUTATIONS
Consider the well known problem of counting the number of occurrences of each word in a large set of documents. The
user would write code similar to the following pseudo-code:

map(String key, String value):
// key: document name

// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word

// values: a list of counts
int result = 0;

for each v in values:
result += ParseInt(v);

Emit(AsString(result));
The map function emits each word and an associated count of occurrences. The reduce function adds together all counts
invoked for a particular word. In addition, the user writes code to fill in a Mapreduce specification object with the
names of the input and output files, and optional tuning parameters. The user then invokes the MapReduce function,
passing it the specification object[2]. The user’s code is linked together with the MapReduce library.Here are a few
simple examples of interesting programs that can be easily expressed as MapReduce computations.

1. Distributed Grep: The map function emits a line if it matches a supplied pattern. The reduce function is an
identity function that just copies the supplied intermediate data to the output.

2. Count of URL Access Frequency: The map function processes logs of web page requests and outputs the
URL. The reduce function combines all the values for the same URL and emits a URL, total count pair.

3. ReverseWeb-LinkGraph: Themapfunction outputs the target, source pairs for each link to a target URL found
in a page named source. The reduce function concatenates the list of all source URLs associated with a given
target URL and emits the pair target,list(source).

4. Term-VectorperHost: A term vectors ummarizes the most important words that occur in a document or a set of
documents as a list of word-frequency pairs. The map function emits a hostname, term vector pair for each

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 4, Issue 12, December 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0412052 21643

input document. The reduce function is passed all per-document term vectors for a given host. It adds these
term vectors together, throwing away infrequent terms, and then emits a final hostname term vector pair.

III. MAP-REDUCE OPERATIONS: A SURVEY

A. MAPREDUCE IMPLEMENTATION:

• Input data is partitioned into ‘M’ splits
• Map: extract information on each split – Each Map produces ‘R’ partitions
• Shuffle and sort – Bring ‘M’ partitions to the same reducer
• Reduce: aggregate, summarize, filter or transform
• Output is in ‘R’ result file

B. MAPREDUCE SCHEDULING :
• Master assigns a map task to a free worker
 – Prefers “close-by” workers when assigning task
– Worker reads task input (From Local Disk)
 – Worker produces ‘R’ local files containing intermediate key-value pairs
• Master assigns a reduce task to a free worker
– Worker reads intermediate k/v pairs from map workers
– Worker sorts & applies user’s Reduce operation to produce the output.

Task / Job Scheduling : Scheduling in MapReduce is a concept in which the slave node send heartbeats periodically to
which the master responds with task if a slot is free, picking task with dataset closest to the node. Problem for job
scheduling in MapReduce is the poor locality for small jobs, which is almost 58% for the jobs of size less than 25 units.
The second problem is the sticky slots, which occurs when the task slots are divided equally between the jobs . The
other concerns are memory aware resource scheduling, throughput gains and network traffic reduction. A solution to
all these problems is global scheduling. The further analysis for throughput is Always worth it, unless there’s a
hotspot.If hotspot, prefer to run IO-bound tasks on the hotspot node and CPU-bound tasks remotely (rationale:
maximize rate of local input output) .

Fig 3 :MapReduce Job Scheduling

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 4, Issue 12, December 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0412052 21644

IV. MAP-REDUCE ARCHITECTURE

A. MAPREDUCE FOR TRADITIONAL SYSTEMS
MapReduce processes data in the form of key-value pairs. A key-value (KV) pair is a mapping element between two
linked data items - key and its value. The key (K) acts as an identifier to the value. An example of a key-value (KV)
pair is a pair where the key is the node Id and the value is its properties including neighbour nodes, predecessor node,
etc. MR API provides the following features like batch processing, parallel processing of huge amounts of data and
high availability. For processing large sets of data MR comes into the picture. The programmers will write MR
applications that could be suitable for their business scenarios. Programmers have to understand the MR working flow
and according to the flow, applications will be developed and deployed across Hadoop clusters. Hadoop built on Java
APIs and it provides some MR APIs that is going to deal with parallel computing across nodes.The MR work flow
undergoes different phases and the end result will be stored in ‘HDFS’ with replications. Job tracker is going to take
care of all MR jobs that are running on various nodes present in the Hadoop cluster. Job tracker plays vital role in
scheduling jobs and it will keep track of the entire map and reduce jobs. Actual map and reduce tasks are performed by
Task tracker.

Fig 4 :Mapreduce Workflow Architecture

B. MAPREDUCE FOR PARALLEL SYSTEMS

Fig 5 : Parallel MapReduce Architecture

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 4, Issue 12, December 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0412052 21645

D. K. G. Campbell in his survey of parallel computations elaborated the use of MapReduce by this parallel
programming concept and is a mechanism for processing huge amounts of raw data[6]. For example web request logs,
Website URLs etc. This data is so large; it must be distributed across thousands of machines in order to be processed in
a reasonable time. L. G. Valiant in the early 90’s in his paper derived that the distribution implies parallel computing
since the same programs are performed on each CPU, but with a different dataset. Here dataset are not depending on
each other during execution[7]. Let’s takes a real world example where problem is solved using MapReduce
programming model.
Problem: In election we need to find out which election party got how many votes in every state.
Solution using MapReduce Parallel Programming:
State wise votes will depend on city wise vote count and all cities under one state will together give the total votes from
that country.Note that we can calculate total count from one state without caring about votes coming from
different cities of other states, we can use parallel algorithm(MapReduce).Here if you start doing sequentially instead
of doing parallel, you need to start with empty list of states and then iterate through the vast list of cities and for each
city, look at the state, and then update(add) state vote count.You can think from performance point of view also, how
bad it would be. Luckily we can use parallel programming here and distribute data set per state wise and then work on
each states parallel to calculate total votes coming in from different cities under one state

C. MAPREDUCE FOR DISTRIBUTED SYSTEMS
The distributed computation for MapReduce works in stages, The first stage comprises of splitting input files into
various chunks, i.e into ‘M’ different pieces. Stage 2 will be to fork the processes from master to several worker
threads. Stage 3 will be mapping tasks and will comprise of 3 steps:•Reads contents of the input shard assigned to it •
Parses key/value pairs out of the input data • Passes each pair to a user-defined map function – Produces intermediate
key/value pairs – These are buffered in memory. Stage 4 will be to create intermediate files by partitioning the section
into parts using partitioning function. The predecessor stage to partitioning will be sorting followed by reduce stage. In
the end the result is returned to the user and the same output is available in ‘R’ distinct files.

Fig 6 :MapReduce for Distributed Systems

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 4, Issue 12, December 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0412052 21646

V. BIG DATA ANALYTICS

A. BIG DATA
 Big data is a data which has the potential to be mined using big data handling frameworks. It is data whose scale, distribution,,
Diversity, and / or timeliness require the use of new technical architectures and analytics to enable insights that unlock new sources
of business values. This data which usually resides in OLAP is characterized by the 3 V’s.
Volume – Refers to the size of the data
Variety – Relates to the different types of data i.e structured, semistructured, and unstructured.
Velocity – The speed at which data is being generated
This data is generated from various sources such as social networking, health-care, banking and finance etc. The size of the data is so
humongous that the traditional RDBMS fails to process such data. The internet sources from source forge and other sites give us the
detailed information about the big data hadoop, which is a data handling framework and also exhibits properties such as fault-
tolerance, transparency, openness, etc [8],[9].

B. ANALYTICS
Multiple organizations and companies, associations, are realizing gradually that the data which is generated by them can be instead
used to improve their business performance. This is possible cause of analytics performed on data. On analytics a user tends to
discover deep insights and intrinsic patterns which are beneficial to them in many ways.
The lifecycle of data analytics :
1) Phase 1 : Discovery –It requires the identification of various data sources who’s data should be considered for analytics
2) Phase 2 : Data Preparation- The selected data is cleaned and uncovered from errors and noises in this stage.
3) Phase 3 : Model Planning- Identification of various candidate models for clustering, classification, and establishing relationship

in the data according to the given goal.
4) Phase 4: Model Building – The model which is cleaned and designed is constructed using various algorithms and methods.
5) Phase 5: Communicate results –After executing the model the analyst is required to compare the outcome of modelling to the

criteria established for success and failures.
6) Phase 6: Operationalize – The results obtained from the previous phases are learnt and brought to implement in an organized

way.

C. Big Data Analytics Architecture

Fig 7 : Architecture

Different categories of data is discovered from various sources. For structured data sources such as RDBMS, Data
Warehouse, ERP, CRM of various organizations are considered for analytics whereas for unstructured data audio,

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 4, Issue 12, December 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0412052 21647

video, clickstream, social media, etc is considered. This data is then integrated together followed by storing in a
suitable repository and ultimately preprocessed to improve the overall quality of the data. The above steps form the
data model which is also called as ADS(Analytical Data Store), finally various analytical tools and algorithms are used
to process this data which gives analytics as the outputs. This output is then visualized using various data visualization
tools and techniques i.e. Graphs, pie-charts, mosaic plots, treemaps, stick figures, chernofffaces, etc.Z. Xiao and Y.
Xiao in their issue of 2014 explained the use of MapReduce for cloud computing[10].

VII. PROPOSED WORK

We propose an e�cient use of MapReduce operations and scheduling on distributed systems. The task components
of MapReduce such as Mapper, Practitioners, Combiners,Reducers are described in this paper. The main issues in
distributed systems using MapReduce for fast processing is job scheduling. The various issues and solutions are
discussed in the later half of the survey. The paper also outlines the architectures of MapReduce implemented in
parallel, distributed, and traditional systems.

A. ISSUES AND CHALLENGES

The main issues and challenges of MapReduce related to data storage are the schema-free, index-free terms, and
lack of standardized SQL-like language. Grolinger, Katarina et.al in their first edition of 2014 explained the issues
related to analytics are scaling complex linear algebra, interactive analysis, iteractive algorithms, and statistical
challenges for learning[11]. Other issues faced by MapReduce in distributed systems are online processing, privacy and
security. The solutions or the approaches to these discussed issues is efficient communication between the nodes, data
pre-processing, security analytics and privacy enforcement.

B. FUTURE SCOPE

In this paper the problem of job scheduling and types of issues in job scheduling is discussed in section 3. The
popular issue among all the issue is ‘Throughput gain’, the throughput gain for the systems can be simply increased by
70% by using efficient system components. The other future works are implementing memory aware scheduling,
resource scheduling, intermediate data aware scheduling, using past history for learning job properties, and evaluation
using richer benchmarks. MapReduce can be implemented across the distributed systems efficiently by improving the
scheduling issues and other security concerns.

VI. CONCLUSION

The MapReduce programming model has been successfully used at Google for many different purposes. First of all the
reasons, the model is easy to use, even for programmers without experience with parallel and distributed systems, since
it hides the details of parallelization, fault-tolerance, openness, extensibility, scalability, locality optimization, and load
balancing. Second, a large variety of problems are easily expressible as MapReduce computations and can be used for
sorting, for data mining, for machine learning, and many other systems. Third, we have developed an implementation
of MapReduce that scales to large clusters of machines comprising thousands of machines. The implementation makes
efficient use of these machine resources and therefore is suitable for use on many of the large computational problems
encountered at distributed systems. We have learned several things from this work. First, restricting the programming
model makes it easy to parallelize and distribute computations and to make such computations fault-tolerant. Second,
network bandwidth is a scarce resource. A number of optimizations in our system are therefore targeted at reducing the
amount of data sent across the network. Third, redundant execution can be used to reduce the impact of slow machines,
and to handle machine failures and data loss.

REFERENCES

1] Jefferey Dean, Sanjay Ghemawat, “MapReduce: Simplified data processing on large clusters”, Google,Inc 2004.
2] Howard Karlo�,SiddharthSuri, Sergei Vassilvitskii, “A Model of Computation for MapReduce”,.
3] Hadoop wiki - powered by. http://wiki.apache.org/ hadoop/PoweredBy.
4] Yahoo! partners with four top universities to advance cloud computing systems and applications research. Yahoo! Press Release, 2009.
http://research.yahoo. com/news/2743

http://www.ijircce.com
http://wiki.apache.org/
http://research.yahoo.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Website: www.ijircce.com

Vol. 4, Issue 12, December 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0412052 21648

5] J. Feldman, S. Muthukrishnan, A. Sidiropoulos, C. Stein, and Z. Svitkina. On distributing symmetric streaming computations. In S.-H. Teng,
editor, SODA, pages 710–719. SIAM, 2008
6] D. K. G. Campbell. A survey of models of parallel computation. Technical report, University of York, March 1997.
7] L. G. Valiant. A bridging model for parallel computation. CACM, 33(8):103–111, August 1990
8] Apache Hadoop, http://hadoop.apache.org
9] Storm, distributed and fault-tolerant realtime computation, http://storm-project.net/
10] Z. Xiao and Y. Xiao, "Achieving accountable MapReduce in cloud computing," Future Generation Computer Systems, 30,pp. 1-13, 2014.
11] Grolinger, Katarina; Hayes, Michael; Higashino, Wilson A.; L'Heureux, Alexandra; Allison, David S.; and Capretz, Miriam A.M., "Challenges
for MapReduce in Big Data" (2014).Electrical and Computer Engineering Publications.Paper 44. http://ir.lib.uwo.ca/electricalpub/44

BIOGRAPHY

Ajinkya Kunjir and Basil Shaikh are computer science engineering students from University of Pune, currently
pursuing their final year of engineering from Modern Education Society’s College of Engineering, Pune. Our research
interests are Big Data, Data Mining, Artificial Intelligence, Machine Learning.

http://www.ijircce.com
http://hadoop.apache.org
http://storm-project.net/
http://ir.lib.uwo.ca/electricalpub/44

