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ABSTRACT: MapReduce is a programming model used for generating and processing large datasets and terabytes of 
data across multiple clusters. There are two functions of this model ‘Map’ and ‘Reduce’.‘Map’ function is used to 
generate intermediate key and value pair, and ‘Reduce’ function is used to merge all the key-value pairs 
generated.Programs and snippet written using this framework model can be executed on parallel and distributed 
platforms. The characteristics of this model such as analysis and fault tolerance allows programmers to implement their 
programs on distributed and parallel programs. This paper outlines the operations of MapReducemodel and big data 
analytics on the distributed systems. Big data is any data that has potential to be mined. Most of the data is unstructured 
and we need a way to manage this data or rather generate important information. MapReduce was invented by Google 
in 2004 for running applications across massive datasets, on huge clusters of machines comprising of commodity 
hardware capable of processing terabytes of data. It implements this computational paradigm used in functional 
programming. In simple terms its a divide and conquer technique where the origin data is divided into self contained 
units of work, each unit is executed independently on any node in the cluster, a key to Map/Reduce programming 
model. 
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I.    INTRODUCTION 
 

Over the past five years, the developers and researchers at Google have implemented thousands of special-purpose 
computations that process huge amounts of raw data, such as formatted documents, web request, server logs, etc., to 
compute various kinds of derived data, such as various representations of the graphical structure of web documents, 
summaries of the number of pages crawled per host, the set of most frequent queries in a day, etc. Most such 
computations are conceptually straightforward. However, the input data is usually large and the computationshave to be 
distributed across hundreds or thousands of machines in order to finish in a feasible amount of time. The issues of how 
to distribute and parallelize the computation, distribute the data, and handle failures conspire to run the original easy 
computation with large amounts of complex code to deal with these issues. 
Jefferey Dean and Sanjay Ghemawat in their paper of ‘Google Inc’ stated tha tthe  reaction to this complexity, there 
was designed a new abstraction that allows us to express the simple computations we were trying to perform but hides 
the noisy details of parallelization, fault-tolerance, data distribution and load balancing in a library[1]. The abstraction 
was inspired by the map and reduce primitives present in Lisp and many other functional languages.] Howard Karlo� 
et.al in their paper derived a theory, that most of the computations involved applying a map operation to each logical 
“record” in our input in order to compute a set of intermediate key/value pairs, and then applying a reduce operation to 
all the values that shared the same key, in order to combine the derived data appropriately[2]. The utilization of a 
functional model with user specified map and reduce operations allows us to parallelize large computations easily and 
to use re-execution as the primary mechanism for fault tolerance. The major contributionsof this work were a simple 
and powerful linterface that enables automatic parallelization and distribution of large-scale computations, combined 
with an implementation of this interface that achieves highper for mance on large clusters of commodity PCs. 
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Section2describesthe previous researches, basic program mingmode lsand gives several examples. Section 3 describes 
the operations of MapReduce, and the architecture of MapReduce systems. Section 4 explains about big data and 
analysis use to handle big data in real time and business use. Section 5discusses related and futurework. 
 

II.    RELATED WORK 
A. BACKGROUND AND RESEARCH 
 
The MapReduce framework was originally developed at Google , but has recently seen wide adoption across all the 
platforms and has become the usual standard for large scale data analysis. Publicly available statistics indicate that 
MapReduce is used to process more than 10 petabytes of information per day at Google alone. The Wikipedia source 
from the internet provided information about anopensourceversion, calledHadoop, which is also a data handling 
framework hasrecently been developed, and is seeing increased adoption both in industry and academia[3]. Over 80 
companies use Hadoop including Yahoo!, New York Stock Market, Facebook, Flash, and IBM. Moreover, Amazon’s 
Elastic Compute Cloud(EC2)isaHadoopclusterwhereuserscanupload large data sets and rent processor time[4]. In 
addition, at least seven universities (including CMU, Cornell, and the University of Maryland) are using Hadoop 
clusters for research. Hadoop and MapReduce together can solve various issues of computing across distributed and 
parallel platforms.MapReduce  can also be implemented using efficient scheduling  schemes and also operations across 
all the nodes in the distributed systems. 
 
B. PROGRAMMING MODELS: A SURVEY 
The computation of MapReduce takes a plethora of input key/value pairs, and produces a plethora of output key/value 
pairs. The accesser of the MapReduce library expresses the computation as two functions: Map and Reduce. Map, a 
user defined function takes an input pair and produces a set of intermediate key/value pairs. The MapReduce library 
groups together all intermediate values associated with the same intermediate key and passes them to the Reduce 
function. The Reduce function, also written by the user, accepts an intermediate key and a set of values for that key. It 
combines together these values to form a possibly smaller set of values. Ideally, just zero or one output value is 
produced per Reduce iteartion. The intermediate values are supplied to the user’s reduce function via an iterator. This 
allows us to handle lists of values that are too large to fit in memory. Also this model is efficient and usable. usable. 

 Mappers and Reducers: 
Key-value pairs constitute the basic data structure in MapReduce. J. Feldmanet.al in their edition of 2008 gave a brief 
description about the keys and values, where it was stated that Keys and values may be primitives such as integers, 
floating point values, double units, strings, and raw bytes, or they may be arbitrarily complex structures  likelists, 
tuples, associative arrays, etc[5]. Programmers typically need to define their own custom data types, although a number 
of libraries such as Protocol Bu�ers, Thrift, and Avro simplify the task. Part ofthedesignofMapReduce 
algorithmsinvolvesimposingthekey-valuestructure on arbitrary datasets. For a set of web pages, keys may be URLs and 
values may be the actual HTML content. For a graph, keys may represent node identifiers(id’s)  and values may 
contain the adjacency lists of those nodes. In few algorithms, input keys are not particularly meaningful and are simply 
ignored during processing, while in other cases input keys are used to uniquely identify a datum (such as a record id). 
Previously, we discussed the role of complex keys and values in the design of various algorithms. In MapReduce, the 
programmer defines a mapper and a reducer with the following signatures:  

map: (k1,v1)→[(k2,v2)]  eq.(1) 
reduce: (k2,[v2])→[(k3,v3)]eq.(2) 

As we can see from equation (1) and (2) which are  the conventions for map and reduce which also states that the input 
to a MapReduce job starts as data stored on the underlying distributed file system. The mapper is applied to every input 
key-value pair to generate an arbitrary number of intermediate key-value pairs. The reducer is applied to all values 
associated with the same intermediate key to generate output key-value pairs. Implicit between the map and reduce 
phases is a distributed “group by” operation on intermediate keys. Intermediate data arrive at each reducer in order, 
sorted by the key. However, no ordering relationship is guaranteed for keys across di�erent reducers. Output key-value 
pairs from each reducer are written back onto the distributed file.Theoutputendsup in ‘r’ filesonthedistributedfilesystem, 
where ‘r’ is the number of reducers. For the most part, there is no need to consolidate reducer output, since the r files 
often serve as input to yet another MapReduce job. Figure 1 illustrates this two-stage processing structure. 
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Fig 1 : Mapper and Reducer 

 Partitioners and Combiners : 
We have so far seen a simplified view of MapReduce. There are two additional components that complete the 
programming model:partitioners and combiners. Partitioners are responsible for dividing up the intermediate key space 
and assigning intermediate key-value pairs to reducers. In simple words, the partitioner specifies the task to which an 
intermediate key-value pair must be copied. Within each reducer, keys are processed in sorted. The simplest partitioner 
involves computing the hash value of the key and then taking the mod of that value with the number of reducers. This 
assigns approximately the same number of keys to each reducer. Note, however, that the partitioner only considers the 
key and ignores the value—therefore, a roughly-even partitioning of the key space may nevertheless yield large 
di�erences in the number of key-values pairs sent to each reducer. This imbalance in the amount of data associated 
with each key is relatively common in many text processing applications due to the Zipfian distribution of word 
occurrences. Combiners are an optimization in MapReduce that allow for local aggregation 
beforetheshu�eandsortphase.We can motivate the need for combinersby considering the Figure 2, which emits a key-
value pair for each word in the collection. Furthermore, all these key-value pairs need to be copied across the network, 
and so the amount of intermediate data will be larger than the input collection itself. This is clearly ine�cient. One 
solution is to perform local aggregation on the output of each mapper, i.e., to compute a local count for a word over all 
the documents processed by the mapper. With this modification, the number of intermediate key-value pairs will be at 
most the number of unique words in the collection times the number of mappers. The combiner in MapReduce supports 
such an optimization. One can think of combiners as “mini-reducers” that take place on the output of the mappers, prior 
to the shu�e and sort phase. Each combiner operates in isolation and therefore does not have access to intermediate 
output from other mappers. The combiner is provided keys and values associated with each key. Critically, one cannot 
assume that a combiner will have the opportunity to process all values associated with the same key. The combiner can 
emit any number of key-value pairs, but the keys and values must be of the same type as the mapper output. In cases 
where an operation is both associative and commutative (e.g., addition or multiplication), reducers can directly serve as 
combiners. In general, however, reducers and combiners are not interchangeable. 
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Fig 2. Partitioners and Combiners 

 
C. MAPREDUCE COMPUTATIONS 
Consider the well known problem of counting the number of occurrences of each word in a large set of documents. The 
user would write code similar to the following pseudo-code: 

map(String key, String value): 
// key: document name 

// value: document contents 
for each word w in value: 
EmitIntermediate(w, "1"); 

reduce(String key, Iterator values): 
// key: a word 

// values: a list of counts 
int result = 0; 

for each v in values: 
result += ParseInt(v); 

Emit(AsString(result)); 
The map function emits each word and an associated count of occurrences. The reduce function adds together all counts 
invoked for a particular word. In addition, the user writes code to fill in a Mapreduce specification object with the 
names of the input and output files, and optional tuning parameters. The user then invokes the MapReduce function, 
passing it the specification object[2]. The user’s code is linked together with the MapReduce library.Here are a few 
simple examples of interesting programs that can be easily expressed as MapReduce computations. 

1. Distributed Grep: The map function emits a line if it matches a supplied pattern. The reduce function is an 
identity function that just copies the supplied intermediate data to the output. 

2. Count of URL Access Frequency: The map function processes logs of web page requests and outputs the 
URL. The reduce function combines all the values for the same URL and emits a URL, total count pair. 

3. ReverseWeb-LinkGraph: Themapfunction outputs the target, source pairs for each link to a target URL found 
in a page named source. The reduce function concatenates the list of all source URLs associated with a given 
target URL and emits the pair target,list(source). 

4. Term-VectorperHost: A term vectors ummarizes the most important words that occur in a document or a set of 
documents as a list of word-frequency pairs. The map function emits a hostname, term vector pair for each 
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input document. The reduce function is passed all per-document term vectors for a given host. It adds these 
term vectors together, throwing away infrequent terms, and then emits a final hostname term vector pair. 

 
III. MAP-REDUCE OPERATIONS: A SURVEY 

 
A. MAPREDUCE IMPLEMENTATION: 

• Input data is partitioned into ‘M’ splits 
• Map: extract information on each split – Each Map produces ‘R’ partitions  
• Shuffle and sort – Bring ‘M’ partitions to the same reducer  
• Reduce: aggregate, summarize, filter or transform  
• Output is in ‘R’ result file 
 

B. MAPREDUCE SCHEDULING : 
• Master assigns a map task to a free worker 
 – Prefers “close-by” workers when assigning task  
– Worker reads task input (From Local Disk) 
 – Worker produces ‘R’ local files containing intermediate key-value pairs  
• Master assigns a reduce task to a free worker  
– Worker reads intermediate k/v pairs from map workers  
– Worker sorts & applies user’s Reduce operation to produce the output. 
 
Task / Job Scheduling : Scheduling in MapReduce is a concept  in which the slave node send heartbeats periodically to 
which the master responds with task if a slot is free, picking task with dataset closest to the node. Problem  for job 
scheduling in MapReduce is the poor locality for small jobs, which is almost 58% for the jobs of size less than 25 units. 
The second problem is the sticky slots, which occurs when the task slots are divided equally between the jobs . The 
other concerns are  memory aware resource scheduling, throughput gains and network traffic reduction. A solution to 
all these problems is global scheduling. The further analysis for throughput is Always worth it, unless there’s a 
hotspot.If hotspot, prefer to run IO-bound tasks on the hotspot node and CPU-bound tasks remotely (rationale: 
maximize rate of local input output) . 
 

 
Fig 3 :MapReduce Job Scheduling 

 
 
 

http://www.ijircce.com


          
                 

                   ISSN(Online): 2320-9801 
           ISSN (Print):  2320-9798                                                                                                                         

International Journal of Innovative Research in Computer 
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Website: www.ijircce.com 

Vol. 4, Issue 12, December 2016 
 

Copyright to IJIRCCE                                                  DOI: 10.15680/IJIRCCE.2016. 0412052                                             21644        

 

IV. MAP-REDUCE ARCHITECTURE 
 

A. MAPREDUCE FOR TRADITIONAL SYSTEMS 
MapReduce processes data in the form of key-value pairs. A key-value (KV) pair is a mapping element between two 
linked data items - key and its value. The key (K) acts as an identifier to the value. An example of a key-value (KV) 
pair is a pair where the key is the node Id and the value is its properties including neighbour nodes, predecessor node, 
etc. MR API provides the following features like batch processing, parallel processing of huge amounts of data and 
high availability. For processing large sets of data MR comes into the picture. The programmers will write MR 
applications that could be suitable for their business scenarios. Programmers have to understand the MR working flow 
and according to the flow, applications will be developed and deployed across Hadoop clusters. Hadoop built on Java 
APIs and it provides some MR APIs that is going to deal with parallel computing across nodes.The MR work flow 
undergoes different phases and the end result will be stored in ‘HDFS’ with replications. Job tracker is going to take 
care of all MR jobs that are running on various nodes present in the Hadoop cluster. Job tracker plays vital role in 
scheduling jobs and it will keep track of the entire map and reduce jobs. Actual map and reduce tasks are performed by 
Task tracker. 

 
Fig 4 :Mapreduce Workflow Architecture 

 
B. MAPREDUCE FOR PARALLEL SYSTEMS 

 

 
Fig 5 : Parallel MapReduce Architecture 
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D. K. G. Campbell in his survey of parallel computations elaborated the use of MapReduce by this parallel 
programming concept and is a mechanism for processing huge amounts of raw data[6]. For example web request logs, 
Website URLs etc. This data is so large; it must be distributed across thousands of machines in order to be processed in 
a reasonable time. L. G. Valiant in the early 90’s in his paper derived that the  distribution implies parallel computing 
since the same programs are performed on each CPU, but with a different dataset. Here dataset are not depending on 
each other during execution[7]. Let’s takes a real world example where problem is solved using MapReduce 
programming model.  
Problem: In election we need to find out which election party got how many votes in every state. 
Solution using MapReduce Parallel Programming: 
State wise votes will depend on city wise vote count and all cities under one state will together give the total votes from 
that country.Note that we can calculate total count from one state without caring about votes coming from 
different cities of other states, we can use parallel algorithm(MapReduce).Here if  you start doing sequentially instead 
of doing parallel, you need to start with empty list of states and then iterate through the vast list of cities and for each  
city, look at the state, and then update(add) state  vote count.You can think from performance point of view also, how 
bad it would be. Luckily we can use parallel programming here and distribute data set per state wise and then work on 
each states parallel to calculate total votes coming in from different cities under one state 
 
C. MAPREDUCE FOR DISTRIBUTED SYSTEMS 
The distributed computation for MapReduce works in stages, The first stage comprises of splitting input files into 
various chunks, i.e into ‘M’ different pieces. Stage 2 will be to fork the processes from master to several worker 
threads. Stage 3 will be mapping tasks and will comprise of 3 steps:•Reads contents of the input shard assigned to it • 
Parses key/value pairs out of the input data • Passes each pair to a user-defined map function – Produces intermediate 
key/value pairs – These are buffered in memory. Stage 4 will be to create intermediate files by partitioning the section 
into parts using partitioning function. The predecessor stage to partitioning will be sorting followed by reduce stage. In 
the end the result is returned to the user and the same output is available in ‘R’ distinct files. 
 

 
Fig 6 :MapReduce for Distributed Systems 
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V. BIG DATA ANALYTICS 
 
A. BIG DATA 
  Big data is a data which has the potential to be mined using big data handling frameworks. It is data whose scale, distribution,, 
Diversity, and / or timeliness require the use of new technical architectures and analytics to enable insights that unlock new sources 
of business values. This data which usually resides in OLAP is characterized by the 3 V’s. 
Volume – Refers to the size of the data 
Variety – Relates to the different types of data i.e structured, semistructured, and unstructured. 
Velocity – The speed at which data is being generated 
This data is generated from various sources such as social networking, health-care, banking and finance etc. The size of the data is so 
humongous that the traditional RDBMS fails to process such data. The internet sources from source forge and other sites give us the 
detailed information about the big data hadoop, which is a data handling framework and also exhibits properties such as fault-
tolerance, transparency, openness, etc [8],[9]. 
 
B. ANALYTICS  
Multiple organizations and companies, associations, are realizing gradually that the data which is generated by them can be instead 
used to improve their business performance. This is possible cause of analytics performed on  data. On analytics a user tends to 
discover deep insights and intrinsic patterns which are beneficial to them in many ways.  
The lifecycle of data analytics : 
1) Phase 1 : Discovery –It requires the identification of various data sources who’s data should be considered for analytics 
2) Phase 2 : Data Preparation- The selected data is cleaned and uncovered from errors and noises in this stage. 
3) Phase 3 : Model Planning- Identification of various candidate models for clustering, classification, and establishing relationship 

in the data according to the given goal. 
4) Phase 4: Model Building – The model which is cleaned and designed is constructed using various algorithms and methods. 
5) Phase 5: Communicate results –After executing the model the analyst is required to compare the outcome of modelling to the 

criteria established for success and failures. 
6) Phase 6: Operationalize – The results obtained from the previous phases are learnt and brought to implement in an organized 

way. 
 

C. Big Data Analytics Architecture 
 

 
Fig 7 : Architecture 

 
Different categories of data is discovered from various sources. For structured data sources such as RDBMS, Data 
Warehouse, ERP, CRM of various organizations are considered for analytics whereas for unstructured data audio, 
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video, clickstream, social media, etc is considered. This data is then integrated together followed by storing in a 
suitable repository and ultimately preprocessed to improve the overall quality of the data. The above steps form the 
data model which is also called as ADS(Analytical Data Store), finally various analytical tools and algorithms are used 
to process this data which gives analytics as the outputs. This output is then visualized using various data visualization 
tools and techniques i.e. Graphs, pie-charts, mosaic plots, treemaps, stick figures, chernofffaces, etc.Z. Xiao and Y. 
Xiao in their issue of 2014 explained the use of MapReduce for cloud computing[10]. 
 

VII. PROPOSED WORK 
 

We propose an e�cient use of MapReduce operations and scheduling on distributed systems. The task components 
of MapReduce such as Mapper, Practitioners, Combiners,Reducers are described in this paper. The main issues in 
distributed systems using MapReduce for fast processing is job scheduling. The various issues and solutions are 
discussed in the later half of the survey. The paper also outlines the architectures of MapReduce implemented in 
parallel, distributed, and traditional systems. 

 
A. ISSUES AND CHALLENGES 

The main issues and challenges of MapReduce related to data storage are the schema-free, index-free terms, and 
lack of standardized SQL-like language. Grolinger, Katarina et.al in their first edition of 2014 explained the issues 
related to analytics are scaling complex linear algebra, interactive analysis, iteractive algorithms, and statistical 
challenges for learning[11]. Other issues faced by MapReduce in distributed systems are online processing, privacy and 
security. The solutions or the approaches to these discussed issues is efficient communication between the nodes, data 
pre-processing, security analytics and privacy enforcement. 

 
B. FUTURE SCOPE 

In this paper the problem of job scheduling and types of issues in job scheduling is discussed in section 3. The 
popular issue among all the issue is ‘Throughput gain’, the throughput gain for the systems can be simply increased by 
70% by using efficient system components. The other future works are implementing memory aware scheduling, 
resource scheduling, intermediate data aware scheduling, using past history for learning job properties, and evaluation 
using richer benchmarks. MapReduce can be implemented across the distributed systems efficiently by improving the 
scheduling issues and other security concerns. 

 
VI. CONCLUSION 

 
The MapReduce programming model has been successfully used at Google for many different purposes. First of all the 
reasons, the model is easy to use, even for programmers without experience with parallel and distributed systems, since 
it hides the details of parallelization, fault-tolerance, openness, extensibility, scalability, locality optimization, and load 
balancing. Second, a large variety of problems are easily expressible as MapReduce computations and can be used for 
sorting, for data mining, for machine learning, and many other systems. Third, we have developed an implementation 
of MapReduce that scales to large clusters of machines comprising thousands of machines. The implementation makes 
efficient use of these machine resources and therefore is suitable for use on many of the large computational problems 
encountered at distributed systems. We have learned several things from this work. First, restricting the programming 
model makes it easy to parallelize and distribute computations and to make such computations fault-tolerant. Second, 
network bandwidth is a scarce resource. A number of optimizations in our system are therefore targeted at reducing the 
amount of data sent across the network. Third, redundant execution can be used to reduce the impact of slow machines, 
and to handle machine failures and data loss. 
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