

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404232 7504

A Survey on Software Quality Requirements
Prioritization Based on Software Architecture

Evaluation Response

Venkateswarlu Sunkari,
Assistant Professor, Centre for ITSC, Addis Ababa Institute of Technology, Addis Ababa, Ethiopia.

ABSTRACT: Software quality requirements are a main driver for architectural decisions of software systems.
Although the need for iterative handling of requirements and architecture has been identified, current architecture
design processes do not provide systematic, quantitative feedback for the prioritization and cost/benefit considerations
for quality requirements. Thus, in practice stakeholders still often state and prioritize quality requirements before
knowing the software architecture, i.e. without knowledge about the quality dependencies, conflicts, incurred costs, and
technical feasibility. However, as quality properties usually are cross-cutting architecture concerns, estimating the
effects of design decisions is difficult. Thus, stakeholders cannot reliably know the appropriate required level of
quality. In this research proposal, we suggest an approach to generate feedback from quantitative architecture
evaluation to requirements engineering, in particular to requirements prioritization. We propose to use automated
design space exploration techniques to generate information about available trade-offs. Final quality requirement
prioritization is deferred until first feedback from architecture evaluation is available. In this paper, we present the
process model of our approach enabling feedback to requirement prioritization and describe application scenarios and
an example.

KEYWORDS: Software Quality Requirements, Software Architecture Evaluation, Requirements Prioritization.

I. INTRODUCTION

Quality attributes such as performance, reliability, and maintainability, are crucial for the success of any software
system. The software architecture largely influences the quality properties a software system will exhibit. However,
while quality requirements are defined in many companies mainly upfront, they are not systematically incorporated
during development and thus are often dismissed later [2, 3]. In particular, interdependencies and trade-offs among
quality requirements often remain unclear. Major difficulties complicate quality requirements prioritization tasks: First,
quality attributes are often pervasive, so that their effect and costs are difficult to estimate in advance [2, pp.3,9].
Second, for many types of quality requirements, a value on a continuous scale, such as a response time of 5 seconds,
needs to be defined. Choosing the right required value (i.e. the required level of quality, which is a subtask of
requirements prioritization) is difficult for managers [3, p. 74].Although the need for iterative handling of requirements
and architecture has been identified decades ago, and several processes have been proposed [13,14], no approaches
provide systematic and quantitative feedback from software architecture design to support quality requirement
prioritization. Quantitative architecture evaluation approaches allow to predict quality properties (such as performance
[10] and reliability [9]) based on models of the software architecture and underlying theories (such as queueing
networks or Markovchains). They improve design decisions with respect to quality attributes and help to understand the
incurred costs. However, these approaches assume fixed quality requirements and thus try to help the software architect
to achieve these requirements, thus not reflecting the iterative nature of the development process. As the contribution of
this paper, we propose a new approach to prioritize quality requirements, relying on feedback from architecture
evaluation and automated design space exploration. The approach requires identification of relevant quality attributes
upfront but defers the decision for required quality levels. Only after initial architecture evaluation and design space
exploration, the trade-off between quality attributes and the costs for achieving quality levels can be reliably estimated.
To validate our research idea, we will (1) extend the existing design space exploration tool PerOpteryx [11] to

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404232 7505

explicitly support quality requirements prioritization and (2) evaluate its benefits in empirical studies, which include
business reporting and industrial automation systems. The expected results of our approach are (1) better informed
quality level definition, (2) guidance in quality requirement prioritization, and, as a result, (3) higher trust in quality
requirements during the development process. Ultimately, our approach shall enable iterative handling of quality
requirements and architecture. The remainder of this paper is organized as follows. In Sec. 2, we discuss the current
state and related approaches in more detail. Then, Sec. 3 describes our idea how to bring quality requirements and
software architecture closer together and enable feedback. Finally, Sec. 4 concludes.

II. RELATED WORKS

The need for iterative handling of requirements and architecture has been identified decades ago [5]. The Twin Peaks
model [13] suggests to concurrently develop requirements specification and architecture by using insight from one
activity in the other. Woods and Rozanski [14] describe how insight from software architecture design can frame and
inspire requirements specification. However, while both methods describe a mindset for software architects, they do not
provide concrete methods and tool support to combine the two worlds.

Quality Requirements in Software Architecture Evaluation: Most approaches for quantitative software architecture
evaluation only focus on one quality attributes (e.g. performance [10] or reliability [9]). Some qualitative approaches
such as ATAM specifically trade off quality attributes based on architecture insights. In ATAM, the main steps with
respect to quality requirement prioritization are the following. In step 2, the business drivers, among them main quality
attributes, are discussed and defined. In step 5, a utility tree is defined for quality attributes which capture the
importance of quality requirements and the value of achieving a certain level of quality. Thus, the utility tree is a form
of quality requirements prioritization. Then, in step 6, possible architectural approaches are evaluated with respect to
this utility tree, e.g. by using performance prediction techniques based on queuing networks. Trade-off points where
quality attributes conflict with each other are highlighted. However, ATAM does not explicitly support the architect
and stakeholders to question and revise the previously defined utility tree based on the evaluation results, but rather
focuses on the effects of architecture decisions to find a combination of decisions that together optimize the given
utility tree. Our approach complements ATAM by enabling systematic feedback for revising the utility tree after
architecture evaluation. Recently, approaches to help the software architect to improve a given software architecture
model have been proposed (e.g. PerOpteryx, ArchE, Performance Booster, Archeopteryx [11]). Such approaches
automatically vary a given architectural model based on predefined degrees of freedom, such as component allocation
to servers, component selection, change of hardware and software parameters, or other, custom defined design
decisions expressed as simple model transformations. The reached variants of the architecture are called architecture
candidates and are evaluated using multiple quantitative quality prediction techniques. Thus, the approaches explore a
part of the design space. Still, so far these approaches only provide feedback to the software architect, and their
connection to decisions on the requirements side remains unexplored. In this work, we address the question how to feed
the gained information back to the requirements engineering phase.

Quality Requirements Prioritization in Research: While numerous approaches to handle quality requirements have
been suggested [6], few approaches address the prioritization of quality requirements. A survey from 2008 on quality
requirements prioritization [8] found that many approaches rely on converting quality requirements into functional
requirements first for cost estimation. For example, a security requirement is operationalized to a requirement for a
login functionality first. However, operationalization does not reflect the pervasive nature of such quality requirements
as performance or reliability. Furthermore, quality requirements often have the before-mentioned continuous scale,
trade-offs among each other, and effect on the utility of each other and the utility of functional requirements [1]. Thus,
prioritization techniques for functional requirements are not properly applicable to quality requirements [1, 3].As an
exception, the QUPER approach [4] specifically supports to prioritize Quality requirements and supports analysts to
define appropriate quality levels.4 Prioritizing Quality Requirements with Architecture Evaluation Feedback However,
reasoning in QUPER is qualitative and relies on estimating quality costs. Our proposed approach is complementary and
could be used to determine QUPER costs barriers and also trade-offs among quality attributes based on quality
prediction.

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404232 7506

III. PRIORITIZATION BY ARCHITECTURE FEEDBACK

Our planned approach provides feedback for requirements prioritization (Fig. 1).Because an initial
understanding of quality requirements is required for architecture design, the process starts with the requirements
engineering activities and with the design of an initial architecture as before. Compared to previous approaches, more
information is collected (design space exploration and analysis of trade-off and dependencies) and a feedback loop
from architecture evaluation to requirements prioritization is introduced. Note that according to BerntssonSvenssonet
al. [2, 3], the definition of required quality levels is a subtask of requirements prioritization. Quality requirements
elicitation is concerned with identifying relevant quality attributes and quality requirements specification is concerned
with defining how to measure (or, more generally, test) the quality requirements1.

Fig. 1. Prioritizing Quality Requirements using Software Architecture Evaluation (new activities are underlined)

This process can for example be instantiated for a business reporting system (BRS). Only quality requirements are
discussed in the following, functional requirements and project requirements are neglected here.

Step 1: Identify relevant quality attributes (stakeholders and requirements engineers): Performance, reliability,
andoperating costs are relevant for the BRS.

Step 2: Specify quality requirements (stakeholders and requirements engineers): For performance, a response
timerequirement is defined for the \reporting" use case. For reliability, the up-time of \reporting" per month is defined.
The operating costs are hardware (servers, network, etc.) and maintenance costs.

Step 3: Prioritize quality requirements (stakeholders and requirements engineers): Initially, stakeholders agree
thatreliability and costs are more relevant than performance. The required quality levels are only roughly defined at this
point: The up-time should be as high as economically sensible, while the response time should be low enough that users
do not notice waiting times.

Step 4: Design initial architecture (software architect): Based on the initially prioritized quality requirements,
thesoftware architect designs an initial architecture and creates an architecture model with quality annotations required
for evaluation.

Step 5: Evaluate software architecture and explore design space (software architect and tools): Based on the
definedarchitecture model and existing model based quality prediction techniques, a design space exploration tool such
as PerOpteryx [11] automatically searches the design space for optimal architecture candidates, e.g. by varying
component allocation to servers, by changing the hardware to procure, by adding load-balancing or redundancy
measures, and by selecting from several available third-party components. Complex architecture models can be handled
by such tools, as shown in several case studies [11, 12, 7]. The result is a set of architecture candidates with optimal
trade-off between the quality attributes (i.e. Pareto-optimal candidates), as shown in Fig. 2.Each point represents a
Pareto-optimal architecture candidate and is plotted for the predicted response time and costs of this candidate.
Architects can inspect further properties of each found candidate, such as the allocation, with the tool.

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404232 7507

Step 6:Analyze trade-offs (software architect): Based on the design space exploration results (Fig. 2), the software
architect notes that all three quality attributes are in conflict. Optimal response time and costs form a typical trade-off
curve (_), but these architecture candidates have a lower availability of 98% per year. To achieve an availability of 99%
per year (_), sacrifices for response time and/or costs need to be made. As a result of this step, the discovered quality
dependencies and insights are fed back into the requirements prioritization. If more quality attributes are analyzed,
advanced tool support from multicriteria decision support research is required to efficiently explore the found trade-
offs.

Step 7: Re-prioritize quality requirements (stakeholders and requirements engineers): Based on the results by
thesoftware architect, stakeholders discuss and negotiate on the required quality levels. Finally, they agree that 98%
availability is actually suficient and allows them to achieve a response time of 3 seconds while having low operating
costs of less than 500 T EUR.

Step 8: Re-design software architecture (software architect): The software architect updates the architectureaccordingly
by selecting the found optimal architecture candidates just below 500 T EUR. Alternatively, if the stakeholders would
not have come to an agreement yet, the software architects could try to make high-level, manual
changes to the architecture (e.g. changing the architecture style), and rerun the design space exploration (indicated by
the backward arrow to design in Fig. 1).

Step 9: Further development: The architecture design is used to implement the system. The architecture modelshould
be continuously updated, especially with insights for quality properties. For example, the model should be updated by
continuous performance measurements of prototypes and first versions of the system. If the quality properties change,
the steps above may be revisited.

Fig. 2. PerOpteryx Results of BRS Design Space Exploration

As a result, our process supports the iterative and deferred definition of quality requirements, and thus provides a
structured approach for stakeholders and software architects to revisit requirements engineering activities after software
architecture design. The design space exploration itself is already realized in the PerOpteryx tool [11] (cf. Sec. 2.1), but
no support for interpreting the results (Fig. 2) is avail

able so far. Thus, to support our new process, we will investigate the new step of trade-off and dependency analysis
based on design space exploration results as next steps in this research. Here, the main research question is how to

 ISSN(Online) : 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 4, April 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0404232 7508

extract and represent quality dependencies relevant to stakeholders and requirements engineers, such as conflicts and
necessary trade-offs, to support prioritization.

Prioritization by architecture feedback could be applied in more scenarios than the described development process. The
prerequisites are (1) that an architecture model of a system is available, and (2) that several quantifiable quality
attributes are relevant and can be predicted based on the available architecture model. The architecture model can be

(a) an initial architecture model based on initial quality requirements as described above, (b) an initial architecture
model based on functional requirements only, (c) a reference architecture for the target domain which is to be adjusted,
or (d) the architecture of an existing system which is to be extended or maintained.

IV. CONCLUSION

We present an approach to support quality requirements prioritization by providing feedback from quantitative
architecture evaluation and design space exploration. Applying our approach, stakeholders, requirements engineers, and
software architects gain a better understanding of the dependencies of quality attributes and the effects of achieving
certain quality values. Thus, it helps them to prioritize quality requirements and decide for an optimal trade-off.
However, the approach is currently limited to quantitatively evaluated quality properties. As next steps, we will
investigate how the dependencies of quality properties can best be extracted from design space exploration results and
how the insight can best be presented to the stakeholders, especially if more than three quality requirements are present.

REFERENCES

[1] P. Berander and A. Andrews. Requirements prioritization. In A. Aurum and C. Wohlin, editors, Engineering and Managing Software

Requirements, pages 69{94. Springer Berlin Heidelberg, 2005.
[2] R. BerntssonSvensson, T. Gorschek, B. Regnell, R. Torkar, A. Shahrokni, and R. Feldt. Quality requirements in industrial practice { an

extended interview study at eleven companies. Software Engineering, IEEE Trans. on, preprint:1, 2011.
[3] R. BerntssonSvensson, T. Gorschek, B. Regnell, R. Torkar, A. Shahrokni, R. Feldt, and A. Aurum. Prioritization of quality requirements

state of practice in eleven companies. In RE'11, pages 69{78. IEEE, 2011.
[4] R. BerntssonSvensson, Y. Sprockel, B. Regnell, and S. Brinkkemper. Setting quality targets for coming releases with QUPER: an industrial

case study. Requirements Engineering, pages 1{16.
[5] B. W. Boehm. A spiral model of software development and enhancement. Computer, 21(5):61 {72, may 1988.
[6] L. Chung and J. C. S. do Prado Leite. On non-functional requirements in software engineering. In Conceptual Modeling: Foundations and

Applications, volume 5600 of LNCS, pages 363{379. Springer, 2009.
[7] T. de Gooijer, A. Jansen, H. Koziolek, and A. Koziolek. An industrial case study of performance and cost design space exploration. In

ICPE'2012, Boston, USA,2012.
[8] Herrmann and M. Daneva. Requirements prioritization based on bene_t and cost prediction: An agenda for future research. In RE'08, pages

125{134. IEEE, 2008.
[9] Immonen and E. Niemel• a. Survey of reliability and availability prediction methods from the viewpoint of software architecture. Software

and System Modeling, 7(1):49{65, 2008.
[10] H. Koziolek. Performance evaluation of component-based software systems: A survey. Performance Evaluation, 67(8):634{658, 2010.
[11] Martens, H. Koziolek, S. Becker, and R. H. Reussner. Automatically improve software models for performance, reliability and cost using

genetic algorithms. In WOSP/SIPEW '10, pages 105{116, New York, NY, USA, 2010. ACM.
[12] Meedeniya, B. Buhnova, A. Aleti, and L. Grunske. Reliability-driven deployment optimization for embedded systems. Journal of Systems

and Software, 84(5):835 { 846, 2011.
[13] Nuseibeh. Weaving together requirements and architectures. IEEE Computer, 34(3):115{117, 2001.
[14] E. Woods and N. Rozanski. How software architecture can frame, constrain and inspire system requirements. In P. Avgeriou, J. Grundy, J.

G. Hall, P. Lago, and I. Mistrk, editors, Relating Software Requirements and Architectures, pages 333{352. Springer Berlin Heidelberg,
10.1007/978-3-642-21001-3 19,2011

