

International Journal of Innovative Research in

Computer and Communication Engineering
(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

 Impact Factor: 8.771 Volume 13, Issue 4, April 2025

© 2025 IJIRCCE | Volume 13, Issue 4, April 2025 |DOI:10.15680/IJIRCCE.2025.1304264

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9803

Parser for Social Media Feeds

Prof. Sathish G C, Vivek, Punith V, Abhiram C, Hrishikesh Naik

Department of CSE, Reva University, Bangalore, Karnataka, India

ABSTRACT: Social media platforms have become central hubs of digital interaction, consequently turning into vital

sources of evidence for forensic investigations. These platforms contain vast amounts of user-generated information

critical for addressing cybercrime, fraud, and other offenses. However, gathering this evidence manually—collecting

posts, messages, connection details, and profile data—is a challenging task. It's not only time-intensive but also

susceptible to human error and often fails to capture the fleeting nature of online content effectively. Addressing these

shortcomings, this paper details the development and architecture of an integrated system designed to automate the

process of parsing and documenting social media activity for forensic use. Our solution brings together a secure web

application for investigators to manage their work, a robust backend system that uses asynchronous processing for

efficiency and scale, and a browser extension that works within the investigator's own browser to carefully extract data

and capture screenshots. The system compiles the gathered information into structured PDF reports, offering a clear,

timestamped record of relevant social media profiles (initially targeting Facebook, Twitter/X, and Instagram). The

ultimate goal is to streamline the evidence collection workflow, minimize manual effort and potential inaccuracies,

improve the thoroughness of data capture, and provide forensic professionals with well-documented evidence ready for

analysis.

KEYWORDS: Digital forensics, Social networking (online), Evidence collection, Web scraping, Browser extension,

Automated data extraction, Asynchronous processing, PDF generation, Evidence preservation, Web application,

Node.js, React, Job Queue.

I. INTRODUCTION

The explosion of social media over the past decade has fundamentally reshaped how individuals communicate and

share information, inadvertently creating rich, complex digital environments that often hold crucial evidence for legal

and investigative matters. Platforms like Facebook, Instagram, and Twitter (now X) serve as digital chronicles,

capturing interactions, relationships, opinions, and activities that can be pivotal in criminal investigations, corporate

inquiries, incident response analyses, and civil disputes [III]. The content housed within these platforms – ranging from

public posts and private communications to intricate networks of followers and detailed user profiles – frequently

provides invaluable context, helping investigators piece together timelines, understand motives, map associations,

verify locations, and decipher communication patterns.

However, the practical reality of harnessing this potential evidence is often hindered by the cumbersome nature of

manual collection methods. Traditionally, investigators have had to undertake the laborious process of navigating

through profiles, manually taking numerous screenshots, carefully transcribing relevant text, and attempting to

assemble these disparate pieces into a coherent and verifiable report. This approach is inherently inefficient, demanding

significant investigator time and resources. More importantly, it is highly susceptible to human error – inconsistent

capture procedures, accidental omissions, transcription mistakes, and subjective biases can all compromise the quality

and completeness of the collected evidence. Furthermore, establishing the integrity and provenance of manually

gathered materials for admissibility in court proceedings can be challenging.

The inherent volatility of social media content, where information can be altered or deleted with alarming speed, adds a

critical time-sensitive dimension to the collection process. Operational constraints, such as platforms restricting certain

views or functionalities on desktop browsers, sometimes force investigators to use specific devices, further

complicating standardization and efficiency [Problem Statement].

© 2025 IJIRCCE | Volume 13, Issue 4, April 2025 |DOI:10.15680/IJIRCCE.2025.1304264

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9804

II. BACKGROUND

Navigating the acquisition of evidence from social media platforms presents unique challenges within the field of

digital forensics. The sheer volume of data, its dynamic nature, platform-specific structures, and privacy considerations

demand specialized approaches. Initial attempts relying solely on manual documentation quickly proved insufficient

due to inherent limitations in scalability, the difficulty in ensuring reproducible results, the risk of inadvertently altering

the evidence during interaction (spoliation), and the struggle to produce verifiable, timestamped records suitable for

legal scrutiny. Consequently, the focus shifted towards developing automated techniques to streamline and improve the

reliability of this process. Currently, two primary automated strategies dominate the landscape of social media data

extraction: leveraging official Application Programming Interfaces (APIs) where available, and employing direct web

scraping techniques [Abstract, PDF 1].

API-Based Extraction: When platforms like Twitter or Facebook offer APIs, they provide a formal, structured

channel for accessing certain types of data [IV, PDF 1]. Interacting with an API typically returns data in predictable

formats (like JSON), which simplifies subsequent parsing and integration into forensic tools. Operating within the

defined boundaries of an API generally aligns with platform policies, mitigating the risk of violating terms of service.

However, the utility of APIs for comprehensive forensic collection is often constrained. Platforms frequently impose

strict rate limits, capping the amount of data that can be retrieved within specific time windows, which can hinder

large-scale investigations. Perhaps more critically, APIs often grant access to only a subset of the information visible on

the platform itself. Historical data, certain types of user interactions (e.g., reactions to older content), ephemeral content

(like Instagram Stories), or information deemed private might be inaccessible via the API, even if readily viewable by

an authenticated user logged into the platform's web interface. Furthermore, APIs are inherently dynamic; platforms

continuously evolve their APIs, modify access policies, introduce new versions, or deprecate older endpoints,

sometimes with limited notice. This necessitates ongoing maintenance and adaptation for any tool relying on these

interfaces [IV, PDF 1]. Instagram, in particular, serves as a prominent example of a platform that has significantly

curtailed its API offerings for general third-party access over time.

Web Scraping: In situations where APIs are non-existent, provide insufficient access for forensic needs, or are overly

restrictive, web scraping emerges as a common, albeit technically demanding and often fragile, alternative [IV, PDF 1].

This approach involves programmatically interacting with the target platform's user-facing website, simulating user

actions (using browser automation tools like Selenium or Puppeteer) or directly fetching and parsing the underlying

HTML code of web pages (using libraries such as BeautifulSoup or Cheerio). The primary advantage of web scraping

is its potential ability to access any data rendered and visible within a standard web browser, potentially capturing

information unavailable through APIs. However, this method is fraught with considerable technical and practical

obstacles:

High Sensitivity to Change: Scraping scripts are typically built upon specific assumptions about the website's

structure (DOM layout, CSS class names, element IDs). Even minor UI redesigns or code refactoring by the platform

can easily break the scraping logic, requiring frequent, time-consuming, and technically skilled maintenance efforts.

Platform Defenses: Social media companies actively invest in sophisticated anti-scraping technologies to protect their

platforms and user data. These countermeasures can include CAPTCHA verification, IP address blocking or rate-

limiting, browser fingerprinting analysis, monitoring user interaction patterns for non-human behaviour, and detecting

headless browser automation. Successfully bypassing these defenses requires advanced techniques and carries inherent

risks.

Handling Client-Side Dynamics: Modern websites are heavily reliant on JavaScript frameworks to load and update

content dynamically after the initial page load (e.g., infinite scrolling feeds, comments loaded on demand via AJAX).

Effectively scraping this dynamic content often requires executing JavaScript within the scraper's environment or

intercepting network traffic, adding significant complexity beyond parsing static HTML.

Authentication Difficulties: Managing user logins and maintaining active sessions programmatically for server-side

scraping can be complex, potentially involving insecure credential storage or triggering multi-factor authentication

prompts and security alerts on the target accounts.

© 2025 IJIRCCE | Volume 13, Issue 4, April 2025 |DOI:10.15680/IJIRCCE.2025.1304264

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9805

Legal and Ethical Considerations: Undertaking web scraping, particularly at scale or aggressively, may constitute a

violation of the platform's Terms of Service, potentially leading to account suspension, legal action, or reputational

harm. Furthermore, investigators must navigate complex ethical considerations regarding user privacy and consent,

especially when collecting potentially sensitive information [IV, PDF 1]. Compliance with data privacy regulations like

GDPR and CCPA is not optional but a strict legal requirement [V, PDF 1].

Leading commercial digital forensic suites, including well-known tools like X1 Social Discovery and Magnet AXIOM,

often adopt hybrid approaches, attempting to combine the benefits of available API access with sophisticated web

scraping techniques to offer comprehensive data collection capabilities [IV, V, PDF 1]. While these tools are powerful,

they often represent a significant financial investment and remain subject to the fundamental limitations imposed by

platform API restrictions, the inherent technical challenges of reliable scraping, and the constantly shifting legal and

technical environment.

III. PROBLEM STATEMENT

The central challenge this work aims to resolve lies in the significant inefficiencies, potential for inaccuracies, and lack

of robust, verifiable documentation associated with the traditional manual methods used to collect digital evidence from

dynamic social media platforms within forensic investigations. The existing manual approaches struggle to meet the

rigorous demands of modern digital forensics concerning speed, comprehensiveness, reliability, and the ability to

produce evidence likely to withstand legal scrutiny.

Therefore, the overarching goal is to develop and validate an automated system specifically designed to overcome these

shortcomings. To achieve this, the system must fulfill the following essential requirements:

Automate Data Extraction and Visual Capture: Establish a reliable automated mechanism to parse relevant textual

information (including, but not limited to, user posts, profile details, timeline entries, connection lists, and associated

timestamps) and simultaneously capture contextual screenshots from designated social media profiles.

Enable Targeted Platform and Profile Selection: Provide investigators with the capability to clearly specify the

target social media platform (initially supporting key platforms like Facebook, Twitter/X, and Instagram) and identify

the specific profile under investigation using standard identifiers such as usernames or direct profile URLs.

Generate Structured, Comprehensive Reports: Automatically assemble the collected textual data and captured

visual evidence (screenshots) into a coherent, well-structured, and easily searchable report format, ideally the Portable

Document Format (PDF), designed for effective forensic documentation, subsequent analysis, and potential

presentation in legal contexts.

Minimize Human Error and Enhance Reliability: Drastically reduce the likelihood of errors commonly associated

with manual processes, such as transcription mistakes, inconsistent screenshotting, data omission, and subjective

selection, thereby improving the overall reliability and trustworthiness of the collected digital evidence.

IV. RESEARCH GAP

While the field of social media forensics has seen progress, and various tools exist, significant gaps remain that hinder

the creation of truly efficient, reliable, and universally applicable collection systems. Our research specifically targets

several of these gaps:

Incompleteness of API-Based Data: A primary gap exists because official platform APIs, while structured, often

deliberately restrict access to the full spectrum of data potentially relevant for forensic analysis (e.g., older posts,

specific interaction types, deleted content remnants visible temporarily, UI elements). Investigators often need access to

data precisely as it appears to an authenticated user, which APIs frequently do not provide [II].

Fragility and of Server-Side Scraping: Conventional server-side scraping tools, while attempting to access data

beyond API limits, suffer from extreme brittleness due to UI changes and face complex challenges in bypassing anti-

bot measures and handling dynamic web content [II]. Furthermore, operating server-side often requires managing

authentication credentials insecurely or dealing with complex session emulation, making it difficult to truly replicate an

© 2025 IJIRCCE | Volume 13, Issue 4, April 2025 |DOI:10.15680/IJIRCCE.2025.1304264

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9806

authentic user view. There's a need for approaches that offer potentially wider access without the same level of fragility

or authentication complexity.

Leveraging Authenticated Context Securely: The most comprehensive view of a social media profile is often

available to a logged-in user. However, securely automating data collection from within that authenticated browser

session without compromising the user's credentials or browser security, and without relying on fragile server-side

emulation, represents a significant technical and architectural gap. Existing solutions rarely integrate this client-side

context effectively with backend processing.

Lack of Integrated Forensic Workflow Systems: Many tools excel at either extraction or analysis or reporting. A gap

exists for seamlessly integrated systems designed specifically for the forensic workflow. Such a system should

encompass secure user management, intuitive case/request initiation, robust handling of potentially long-running

collection tasks (including coordination between client and server), reliable and verifiable evidence storage, and

integrated report management and retrieval capabilities, all within a cohesive interface.

Bridging Client-Side Capture and Backend Orchestration: Architecturally, effectively coordinating actions

between a client-side component (like a browser extension capturing data opportunistically) and a sophisticated

backend system (handling job queuing, complex PDF generation, secure storage, user verification) poses unique

challenges. Documented examples of architectures successfully bridging this divide for forensic purposes, particularly

ensuring data integrity and user attribution across the boundary, are scarce.

Our research directly confronts these gaps. By centering the data capture process around a browser extension (Gap 3),

we aim to leverage the authenticated user context to potentially access more comprehensive data than APIs allow,

while avoiding the pitfalls of complex server-side authentication management (addressing Gap 2 indirectly). This

extension acts as the client-side capture mechanism, directly interacting with the rendered web page. Crucially, we

integrate this client-side component with a comprehensive backend system featuring secure user authentication,

asynchronous job queuing for scalability, dedicated worker processes for complex tasks like PDF generation, and

secure cloud storage (addressing Gap 4 and 5). The explicit verification step, where the backend validates the

examiner's username submitted by the extension against its own authenticated user database, provides a critical bridge

ensuring data attribution and integrity across the client-server boundary, filling a key aspect of Gap 5. This integrated

architecture offers a novel approach compared to purely API-based or traditional server-side scraping solutions.

V. RESEARCH OBJECTIVES

Stemming from the identified challenges and the desire to fill the existing research gaps, we established the following

specific objectives for this project:

Architect and Implement a Cohesive Multi-Component System: To design, build, and validate a system

architecture that effectively integrates three distinct but interacting components: (a) a user-friendly frontend web

application for investigator control and report management, (b) a scalable backend API server responsible for business

logic, task orchestration, and data persistence, and (c) a specialized browser extension designed for targeted data

capture directly from social media websites.

Establish Secure User Authentication and Authorization: To implement robust mechanisms for user registration

and login within the web application, employing industry-best practices such as strong password hashing (bcrypt) and

token-based authentication (JWT) to ensure that only verified and authorized investigators can access system

functionalities, initiate data collection tasks, and retrieve generated forensic reports.

Develop an Asynchronous Task Processing Backend: To engineer and integrate an efficient asynchronous

processing workflow utilizing a message queue (e.g., BullMQ/Redis) and dedicated background worker processes. This

architecture aims to handle computationally intensive or time-consuming operations (like coordinating scraping,

generating complex PDFs, interacting with cloud storage) without blocking the primary API server, thereby ensuring a

responsive user interface and enabling the system to scale effectively under concurrent load.

© 2025 IJIRCCE | Volume 13, Issue 4, April 2025 |DOI:10.15680/IJIRCCE.2025.1304264

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9807

Create Client-Side Data Extraction Capabilities via Browser Extension: To develop a browser extension capable of

dynamically injecting code (content scripts) into the web pages of supported social media platforms (initially Facebook,

Twitter/X, Instagram). This extension must be able to accurately identify the platform context, locate and extract

relevant information (profile details, visible posts) by parsing the page's Document Object Model (DOM), and capture

contextual screenshots, all while operating within the technical constraints and security sandbox of the browser

environment.

Implement Structured Report Generation and Secure Cloud Storage: To build a reliable module, executed by the

backend worker, that can process the diverse data (text, metadata, images) collected by the extension, systematically

compile it into a standardized, structured PDF report format suitable for forensic documentation and review, and

implement secure, scalable storage mechanisms for these reports, prioritizing the use of cloud-based object storage (like

Google Cloud Storage) for persistence and accessibility.

Ensure Verifiable Data Provenance and User Attribution: To design and implement mechanisms that establish a

clear and verifiable link between the data captured by the browser extension and the authenticated investigator who

initiated the specific collection request through the web application. This includes backend verification of the

examiner's identity submitted alongside the captured data.

Conduct Functional Evaluation and Identify Operational Limitations: To perform thorough functional testing of

the fully integrated system, validating the complete end-to-end workflow from request initiation to report download.

This evaluation aims to assess the system's effectiveness in meeting the automation objectives and, equally importantly,

to critically identify and document the practical challenges, inherent limitations (especially concerning the reliability

and maintenance of web scraping), and potential areas requiring future improvement or alternative approaches.

VI. METHODOLOGY

To achieve the research objectives, we adopted a methodology centered on building a distributed system with clearly

defined components and interactions. The architecture was designed for modularity, allowing different parts (like the

frontend UI, backend API, data capture extension, and processing worker) to be developed and potentially scaled

somewhat independently.

Fig. 1: High-Level System Architecture Block Diagram

© 2025 IJIRCCE | Volume 13, Issue 4, April 2025 |DOI:10.15680/IJIRCCE.2025.1304264

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9808

The core components and their implementation approach are detailed below:

Frontend Web Application: We chose React, a popular JavaScript library, combined with the Vite build tool for its

fast development experience and efficient production builds. This allowed us to create a responsive Single Page

Application (SPA). Key interface elements included forms for authentication, a dashboard for initiating report requests

(specifying platform and target identifier), and a dynamic list displaying report status with download capabilities.

Communication with the backend relied on the Axios library, configured with interceptors to handle authentication

tokens (JWT) automatically and manage session expirations gracefully. State management within components handled

loading indicators, error messages, and the display of fetched report data. Polling was implemented within the report

list component to provide near real-time status updates for ongoing jobs.

Backend API Server: Node.js served as the runtime, with the Express.js framework providing the structure for

building RESTful API endpoints. Mongoose was used as the Object Data Mapper (ODM) to interact with a MongoDB

database, defining schemas for User and Report collections. The User schema included username and a password field

automatically hashed using a pre-save hook with the bcrypt library. The Report schema stored references to the user,

platform details, target identifier, processing status (using an enum: 'Received', 'Generating', 'Completed', 'Failed'), error

messages, the final PDF URL, and timestamps. Authentication endpoints (/api/auth/register, /api/auth/login) handled

user credential management and JWT issuance/verification. Report endpoints (/api/report) managed incoming data

submissions from the extension (including crucial username verification against the User collection), handled requests

from the frontend to list reports (filtering by the authenticated user ID extracted from the JWT by protect middleware),

and generated secure, time-limited download URLs for completed reports stored in Google Cloud Storage. A critical

function of the API was to enqueue processing jobs into the BullMQ message queue upon successful data reception and

verification, rather than processing synchronously.

Asynchronous Task Processing: We implemented a message queue using BullMQ, leveraging a Redis instance as the

backend broker. This queue, named pdf-processing, received job messages from the API server. Each job contained the

necessary information (like the MongoDB reportId, platform, the full content payload received from the extension, and

target identifier) for the worker to process. A separate Node.js worker process was created to listen exclusively to this

queue. This worker employed logic to handle concurrency and retries as configured in BullMQ. Its primary

responsibility was to dequeue jobs, orchestrate PDF generation using the received data, handle the upload to cloud

storage, and update the corresponding report's status and URL in the MongoDB database. This decoupling was

essential for maintaining API responsiveness and enabling background processing.

Browser Extension: Developed following Chrome Extension Manifest V3 standards.

Content Script: Injected JavaScript code designed to run within the context of loaded social media pages. It used

standard DOM manipulation methods (document.querySelector, querySelectorAll, innerText) to locate and extract

textual data based on known (though potentially unstable) CSS selectors or element structures specific to each

supported platform (Twitter/X, Instagram, Facebook). It communicated with the Service Worker

via chrome.runtime.sendMessage.

Service Worker: The extension's background event handler. It managed the overall workflow initiated by the popup. It

coordinated communication with the content script, requesting profile and post data sequentially. It utilized

the chrome.tabs.captureVisibleTab API to capture a PNG screenshot of the currently visible tab content. After

aggregating the data from the content script and the screenshot, it constructed the final JSON payload and used

the fetch API to send it via POST request to the configured backend API endpoint, ensuring the examiner's username

(received from the popup) was included in the payload for backend verification. It also relayed status messages back to

the popup UI.

Popup: An HTML page with associated JavaScript providing the user interface upon clicking the extension icon. It

included input fields for the mandatory examiner username and the configurable backend API URL (with persistence

using chrome.storage.local). The main button triggered the generateFullReport message to the service worker. It also

listened for status update messages from the service worker to provide feedback to the user.

PDF Generation and Storage: The backend worker process employed the pdfkit Node.js library for creating PDF

documents dynamically. The code structured the PDF logically with a title page containing metadata, followed by

sections detailing the extracted profile information. Screenshots received from the extension (as base64 data URLs)

were temporarily saved to the worker's local filesystem as image files (e.g., PNG) before being embedded into the PDF

© 2025 IJIRCCE | Volume 13, Issue 4, April 2025 |DOI:10.15680/IJIRCCE.2025.1304264

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9809

using pdfkit's image embedding capabilities. Extracted posts were formatted and added sequentially. Error handling

was included to note scraping failures within the PDF. After successful generation, the worker used the official Google

Cloud Storage Node.js client library to upload the locally generated PDF file to a designated GCS bucket. The worker

required appropriate service account credentials (configured via

the GOOGLE_APPLICATION_CREDENTIALS environment variable) to authenticate with GCS. Upon successful

upload, the standard GCS URL (https://storage.googleapis.com/...) was stored in the corresponding Report document in

the database. Download access was managed by the backend API generating short-lived signed URLs upon request

from an authenticated user.

This methodology emphasized modular design, asynchronous processing for performance, leveraging the browser

environment for data capture via the extension, and secure handling of user authentication and data storage.

VII. TOOLS AND TECHNIQUES USED

The realization of the Social Media Feed Parser system drew upon a carefully selected combination of contemporary

web technologies, programming languages, libraries, and architectural principles. The choices were driven by the

specific requirements of the project, including the need for a responsive user interface, scalable backend processing,

secure authentication, interaction with the browser environment, document generation, and cloud integration.

Frontend Development: To build the user-facing application, we utilized React, a popular JavaScript framework

chosen for its efficiency in creating dynamic, component-based interfaces and its extensive supporting ecosystem.

The Vite build tool was employed to provide a fast development server environment and generate highly optimized

code bundles for production deployment.

For handling communication with the backend API, the Axios library facilitated making asynchronous HTTP requests,

offering helpful features like interceptors for seamless authentication header management. Client-side navigation within

the single-page application, including the implementation of protected routes requiring authentication, was managed

using React Router. UI state, such as tracking loading statuses, displaying error messages to the user, and managing the

fetched report data, was handled effectively using React's built-in state management

capabilities like useState and useContext.

Backend Development:

The core backend system was built upon the Node.js runtime environment, allowing us to leverage JavaScript for

scalable server-side application development. We used the Express.js web framework for its minimalist and flexible

approach to structuring the backend RESTful API, defining routes, and managing middleware functions. For data

persistence, MongoDB was selected as the NoSQL database, primarily due to its flexibility in handling potentially

varied report structures and its strong integration with the Node.js ecosystem. Interaction with MongoDB was

streamlined using the Mongoose Object Data Mapper (ODM), which provides convenient methods for schema

definition, data validation, and implementing middleware hooks, such as the one used for automatic password hashing.

Robust user authentication was achieved using JSON Web Tokens (JWT) for stateless session management, while

the bcrypt library ensured that user passwords were securely hashed before being stored in the database.

Asynchronous Task Processing:

To ensure the application remained responsive during potentially long-running operations, an asynchronous task

processing architecture was implemented. We utilized the BullMQ message queue library, backed by a Redis instance,

to effectively decouple tasks like PDF generation and cloud uploads from the main API request-response cycle. This

approach enhances scalability and provides reliable background job execution.

Browser Extension:

The critical client-side data capture component was developed as a browser extension using standard WebExtension

APIs (specifically following Chrome's Manifest V3 standards). These APIs provided the necessary capabilities for

DOM manipulation via content scripts, background processing logic within a service worker, creating a user interface

element (the popup), managing local extension storage, and facilitating secure messaging between extension

components. The extension's internal logic and user interface elements were constructed using fundamental web

technologies: JavaScript, HTML, and CSS.

© 2025 IJIRCCE | Volume 13, Issue 4, April 2025 |DOI:10.15680/IJIRCCE.2025.1304264

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9810

Document Generation:

The programmatic creation of the final forensic reports was handled by the pdfkit library within the backend worker

process. This powerful Node.js library allowed for detailed control over PDF document creation, including text

formatting, precise layout management, and the embedding of images captured by the browser extension.

Cloud Infrastructure:

For scalable, durable, and secure storage of the generated PDF reports, essential for operational deployment, we

integrated Google Cloud Storage (GCS). Secure authentication between the backend worker process and the GCS APIs

was managed using a GCS Service Account key file. To enable secure downloads of the potentially sensitive reports,

we leveraged GCS's URL Signing feature, which generates time-limited, unique URLs granting temporary access to

private objects, thereby avoiding the need to make the reports publicly accessible.

General Tools:

Visual Studio Code served as the primary Integrated Development Environment (IDE), providing a comprehensive

environment for coding, debugging, and project management. Sensitive configuration parameters, such as database

connection strings, API keys, and cloud credentials, were managed securely outside the application's source code

using environment variables, typically loaded via .env files during development.

VIII. RESULTS AND DISCUSSION

The implementation phase culminated in a functional system capable of executing the designed workflow for

automated social media evidence collection and documentation. Testing confirmed that the core components interacted

as intended, allowing authenticated investigators to initiate report requests through the web application, trigger data

capture via the browser extension on supported platforms (Twitter/X, Facebook, Instagram), have the requests

processed asynchronously by the backend, and ultimately download structured PDF reports containing the collected

information.

Evaluation of Functional Achievements:

Successful Automation: The primary goal of automating the collection process was achieved. The system effectively

replaces the manual tasks of navigating profiles, taking screenshots, and transcribing basic profile details and visible

posts (with varying success based on platform stability). This demonstrably saves investigator time and effort.

Asynchronous Architecture Performance: The message queue and worker process architecture performed

exceptionally well. Requests initiated via the web application received immediate confirmation, and the UI remained

responsive regardless of the processing load on the backend worker. This validated the choice of an asynchronous

design for handling potentially long-running tasks.

Structured Reporting: The use of pdfkit enabled the generation of consistent and organized PDF reports. These

reports included essential metadata, logically separated sections for profile information and posts, and embedded

screenshots, providing a standardized and more easily reviewable format compared to ad-hoc manual documentation.

User Authentication and Data Linkage: The JWT-based authentication secured the web application effectively. The

implemented workflow, requiring the investigator to provide their username in the extension popup for backend

verification before processing, successfully established a traceable link between the captured data and the authorized

initiating user, addressing a crucial aspect of data provenance within the system's context.

Secure Storage and Access: Employing Google Cloud Storage for report persistence and utilizing signed URLs for

download access provided a secure and scalable solution for managing the final evidence artifacts.

© 2025 IJIRCCE | Volume 13, Issue 4, April 2025 |DOI:10.15680/IJIRCCE.2025.1304264

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9811

IX. DISCUSSION OF CHALLENGES AND OPERATIONAL REALITIES

While functionally successful, the system's reliance on browser-extension-based web scraping surfaced significant

operational challenges and limitations that warrant careful consideration:

The Achilles' Heel: Scraping Fragility: By far the most critical challenge is the inherent instability of the data

extraction logic within the browser extension's content script. Social media platforms continuously iterate on their

frontend code, layouts, and class names. Any such change, even minor ones, has a high probability of breaking the

specific DOM selectors relied upon by the scraper, rendering data collection inaccurate or impossible until the

extension is updated. This necessitates a reactive and potentially resource-intensive maintenance cycle, constantly

adapting the extension to keep pace with platform evolution. During our testing, Instagram and Facebook selectors

proved particularly volatile.

Handling Web Dynamism: Modern social media interfaces heavily utilize JavaScript for dynamic content loading

(e.g., infinite scrolling feeds, lazy-loaded images, comments appearing on demand). The current implementation

primarily captures the static or initially loaded content well. Reliably capturing data that requires user interaction (like

scrolling) or complex JavaScript execution from within the content script requires more sophisticated techniques (e.g.,

programmatic scrolling, Mutation Observers, waiting for specific network events) which add complexity and can

further reduce reliability.

Platform Defenses and Ethical Use: Although leveraging the user's session bypasses direct login issues, the

automated nature of the extension's interactions could still be detected by platform anti-bot systems if performed too

rapidly or predictably. This might lead to temporary restrictions, CAPTCHA challenges, or account scrutiny. Use of the

tool must be judicious, respecting platform resources and, most importantly, adhering strictly to legal authorizations

and ethical guidelines for investigations. The tool provides a means of collection, not the authority to collect.

Screenshot Limitations: Capturing truly comprehensive visual evidence via automated screenshots is challenging. The

current captureVisibleTab provides only the viewport. Full-page, scrolling screenshots or capturing specific dynamic

elements accurately across various screen sizes and states often require more advanced browser automation capabilities

or client-side libraries (like html2canvas), which can impact performance and complexity.

Workflow Dependencies: The system requires conscious user action: the investigator must navigate to the correct

page, ensure the extension is active, invoke its functionality, and provide their username. This introduces manual steps

© 2025 IJIRCCE | Volume 13, Issue 4, April 2025 |DOI:10.15680/IJIRCCE.2025.1304264

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9812

and potential inconsistencies compared to a hypothetical, fully autonomous server-side ideal (which faces its own

significant hurdles).

Performance Notes: The system demonstrated good responsiveness in user-facing interactions due to the backend's

asynchronous design. The bottleneck lies in the worker process, where PDF generation and cloud uploads for complex

reports can take noticeable time (seconds to potentially minutes). The browser extension itself remained relatively

lightweight during testing, though very complex pages could theoretically cause minor browser slowdown during

intensive DOM parsing or screenshotting.

In essence, the project successfully demonstrated the technical feasibility of the proposed architecture but also

underscored the significant operational challenges associated with maintaining web scraping tools in the dynamic

social media environment. The automation offers tangible benefits, but practical deployment requires acknowledging

and planning for the continuous maintenance effort involved.

X. CONCLUSION

In conclusion, this paper has thoroughly documented the design, implementation, and operational characteristics of an

automated system developed for the parsing and documentation of social media feeds, tailored specifically to enhance

digital forensic investigations. The system successfully integrates a secure web application for investigator control, a

scalable backend employing asynchronous processing through message queues, and an innovative browser extension

that performs data capture directly within the user's authenticated browser context. Through this architecture, the

system automates the collection of profile information, visible posts, and contextual screenshots from major platforms

like Facebook, Twitter/X, and Instagram, subsequently compiling this evidence into structured, standardized PDF

reports stored securely in cloud infrastructure.

XI. FUTURE DIRECTIONS

Based on the insights gained during development and testing, several promising avenues exist for future enhancements

to improve the system's robustness, expand its capabilities, and increase its overall value within the digital forensic

toolkit:

Improving Scraping Robustness: The most critical area for future work is mitigating the fragility of the browser

extension's scraping logic. Research and implementation could focus on:

Visual Selectors: Employing techniques that identify elements based on visual characteristics (e.g., relative position,

appearance) rather than relying solely on potentially volatile CSS selectors or DOM paths.

AI/ML Element Identification: Training lightweight machine learning models to recognize common social media

components (posts, profile headers, comment sections) even when underlying code structures change moderately.

Heuristic Approaches: Developing more flexible parsing logic that uses multiple potential selectors or structural

patterns to find target data, increasing resilience to minor changes.

Expanding Platform Support and Methods: Systematically assess and add support for other social media or online

platforms frequently encountered in investigations. For platforms notoriously difficult to scrape via browser extensions

(e.g., end-to-end encrypted messaging applications like WhatsApp, Signal, Telegram), investigate alternative

integration strategies, such as interoperability with specialized mobile forensic extraction tools or analysis of desktop

application data artifacts, where legally permissible and technically feasible.

Advanced Reporting and Integrity: Enhance the capabilities of the PDF reporting module:

Customization: Allow investigators to configure report templates or select specific data fields for inclusion.

Data Hashing: Automatically compute and embed cryptographic hash values (e.g., SHA-256) for individual extracted

text snippets and captured screenshots within the PDF metadata or content, providing stronger evidence integrity

verification.

Interactivity/Analysis: Explore embedding basic interactive elements or preliminary data visualizations (e.g., timelines,

simple charts) within the PDF reports.

Sophisticated Dynamic Content Handling: Implement more advanced techniques within the extension's content

scripts to reliably capture dynamically loaded content. This could involve controlled programmatic scrolling combined

© 2025 IJIRCCE | Volume 13, Issue 4, April 2025 |DOI:10.15680/IJIRCCE.2025.1304264

IJIRCCE©2025 | An ISO 9001:2008 Certified Journal | 9813

with mutation observers, intelligent waiting strategies for specific network events or element appearances, or potentially

intercepting relevant frontend API calls made by the platform itself (if technically possible and compliant with terms).

Integration of Natural Language Processing (NLP): As suggested by related research [II], integrate NLP functionalities

into the backend worker process. This could enable automated analysis during report generation, such as performing

sentiment analysis on posts, identifying named entities (people, locations, organizations), extracting relevant keywords based

on case context, or applying topic modeling to large volumes of captured text, thereby providing initial analytical insights to

the investigator.

Enhanced Provenance and Audit Trails: Bolster the system's ability to provide a detailed and verifiable record of the

collection process. Beyond basic timestamps and user attribution, explore logging more granular actions performed by the

extension and worker (e.g., specific selectors used, elements captured). Investigate the feasibility of utilizing blockchain

technology [V] to create immutable, timestamped records of collection metadata and actions, potentially strengthening

admissibility arguments.

System Monitoring and Management: Develop comprehensive monitoring dashboards for administrators or lead

investigators. These dashboards could track job queue statistics, worker performance metrics, identify patterns of scraping

failures across different platforms (indicating a need for extension updates), and provide overall system health monitoring to

facilitate proactive maintenance.

Usability Enhancements: Conduct formal usability studies involving target end-users (digital forensic investigators) to

gather feedback on both the web application interface and the browser extension workflow. Use this feedback to iteratively

refine the user experience, focusing on clarity, intuitiveness, and efficiency within the context of typical investigative

procedures.

Native Application Feasibility Study: Undertake a thorough investigation into the necessity and feasibility of developing

dedicated native applications (for Windows, macOS, or potentially Android) as companions or alternatives to the browser-

based approach. This would be justified if specific platforms or data types critical to investigations are demonstrably

inaccessible via standard web browsers and extensions.

XII. ACKNOWLEDGMENTS

We wish to express our sincere and profound gratitude to Reva University. The institution's provision of essential resources,

access to necessary infrastructure, and the fostering of a supportive academic climate were absolutely instrumental in the

successful conception, development, and completion of this research project.

We are deeply indebted to our dedicated mentors, knowledgeable professors, and insightful research advisors; their expert

guidance, constructive criticism, and unwavering encouragement provided invaluable direction throughout the project's

duration. Furthermore, this work stands on the shoulders of the vibrant global open-source software community. We

gratefully acknowledge the critical role played by the numerous freely available tools, libraries, and frameworks – including

the Node.js runtime, the React library, the Express framework, MongoDB, Redis, BullMQ, pdfkit, the Google Cloud Client

Libraries, and the foundational WebExtension APIs – whose collective power and accessibility made the implementation of

this complex system feasible. The spirit of collaboration inherent in open source significantly accelerated our progress and

enriched our development experience.

REFERENCES

[1] J. D. Wang and P. Luo, “A Multi-Layer Semantic Approach for Digital Forensics Automation for Online Social

Networks,” Sensors, vol. 22, no. 3, p. 964, Feb. 2022. doi: 10.3390/s22030964.

[2] S. Prakash, Z. Shahbazi, and Y.-C. Byun, “NLP-Based Digital Forensic Analysis for Online Social Network Based on

System Security,” Int. J. Environ. Res. Public Health, vol. 19, no. 12, p. 7421, June 2022. doi: 10.3390/ijerph19127421.

[3] N. Shashidhar, "A Comprehensive Survey on Artifact Recovery from Social Media Platforms: Approaches and Future

Research Directions," Information, vol. 14, no. 12, p. 668, Dec. 2023. doi: 10.3390/info14120668

[4] K. Maitra, “Digital Forensic Analysis of Social Media Platforms for Enhanced Investigation and Evidence

Collection," Int. J. Innovation and Applied Studies, vol. 43, no. 4, pp. 1194-1207, Aug. 2024. [Online]. Available:

 8.379

