

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH

IN COMPUTER & COMMUNICATION ENGINEERING

Volume 9, Issue 7, July 2021

Impact Factor: 7.542

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | | Impact Factor: 7.542 |

|| Volume 9, Issue 7, July 2021 ||

| DOI: 10.15680/LJIRCCE.2021.0907023 |

Survey on Block Design-Based Key Agreement for Group Data Sharing in Cloud Computing

Megha Shah, Dr. Uma Godase

PG Student, Department of Information Technology, Sinhgad College of Engineering Pune, Maharashtra, India Professor, Department of Information Technology, Sinhgad College of Engineering Pune, Maharashtra, India

ABSTRACT: Data shared in the cloud allows many numerous people exchange their data in a group that helps improve environmental work efficiency. It is a challenging task today how we can assure data security in a single group and also how to share the data with multiple group members, and for it we use a key agreement protocol to share our data in a safe group. In this article we demonstrate a new conceptual agreement protocol, which contributes to the participation of many users who assist may expand many participants in the cloud environment based on the building of the block design, by using the symmetrical block design. Based on the group data sharing of the model. For several participants, we provide a regular approach to retrieve some shared conference key. A key agreement protocol is established, which includes the key to the Conference, in order to ensure the protection of your communication and to ensure that information exchange is secured. Cluster securing plays an essential part in the essential agreement

KEYWORDS: Secure data distribution, Data integrity, and Access control, Balanced Incomplete Block Chain Data Sharing Cloud Computing.

I. INTRODUCTION

This article gives us with an accurate and comprehensive Vital Algorithm based various data masters to exchange their information utilizing extremely big intelligence services for far too many clients at a period. We learn that the principal protocol generates similar keys for the different participants to ensure that the interactions are secured and that the different participants may use them. However, the primary reason is that the protocol for setting up a group for the exchange of external information is protected. Over the last decades, cloud computing and cloud storage have been a hot topic across the globe. In these cloud servers every person and many organizations have an open, easy platform, but there are also a wide range of security issues, cloud is mostly attacked by malicious use and service providers, therefore it is important to keep the security of cloud. Cloud computing demand comes from the different storage and rapid access resources. It supports infrastructure resources and then delivers on-line on demand services. Nowadays, many prominent firms provide public cloud services, such as Amazon, which allows users to upload data such as images, document games and keep lists, so that data is provided to access from everywhere, but security is also a major problem. In some areas, data users assist learn numerous users' behaviour

A. Motivation

- Data Security: -
 - When the Data is uploaded by end User and is given to admin then admin encryption at content level and storage using block chain concepts.
- Data Accessibility: -
 - Making data accessible to the valid users easily.
- Invalid User: -
 - Securing data from intruders of data.

B. Objectives

- In cloud computing consistent view of resources is not monitored which lacks the actual condition & hence in case of faults heavy data losses or data availability reduction occurs.
- Centralized resource manager is not identified which shares the distributed load information for first level encryption admin is performance and accurate analysis is done by cloud services provider.
- our application is used as concepts of KASE.
- Dynamic and efficient key management for access hierarchies.
- Simple and fault-tolerant key agreement for dynamic collaborative data of groups.

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | | Impact Factor: 7.542 |

|| Volume 9, Issue 7, July 2021 ||

| DOI: 10.15680/IJIRCCE.2021.0907023 |

C. Problem Statement

Cloud got many issues when it comes to security especially on Data loss, Data integrity, Data theft, and Privacy and security. According to cloud on the data loss is a very serious problem in Cloud computing. If the vendor closes due to financial or legal problems there will be a loss of data for the customers. Data Integrity is when a data is on a cloud anyone from any location can access those data from the cloud. Cloud does not differentiate between a sensitive data from a common data thus enabling anyone to access those sensitive data. Data Theft Most of the cloud Vendors instead of acquiring a server tries to lease a server from other service providers because they are cost affective and flexible for operation Data are not stored as categories in Exiting system now in our system data are stored as the different categories. The Data are Stored in the format of Block Chain and the Main Security are not done when the data are accessibility to end User.

II. LITERATURE REVIEW

1. PROXY PROVABLE DATA POSSESSION IN PUBLIC CLOUDS [1]

In public cloud environment, the client moves its data to public cloud server (PCS) and cannot control its remote data. Thus, information security is an important problem in public cloud storage, such as data confidentiality, integrity, and availability. Proxy provable data possession (PPDP) system allow user to secure its data through delegated proxy. PPDP provides integrity checking, provable security, bilinear pairing. This system is feasible only for the public cloud sector.

2. MOBILE CLOUD COMPUTING SERVICE MODELS: A USER-CENTRIC APPROACH [2]

Cloud computing enables mobile devices to offload complex operations of mobile applications, which are infeasible on mobile devices alone. We first provide a classification and representative achievements of current MCC service models. Then we discuss the transformation from the traditional Internet cloud to the user-centric mobile cloud by listing the issues for current MCC and presenting user-centric MCC and its design principles. It presents a new user centric MCC Service Model. Cost is more for centralized approach.

3. CLOUD-ENABLED DATA SHARING MODEL [3]

Database-as-a-Service is becoming more and more popular for many organizations. Storing data on the cloud can significantly reduce costs in terms of maintenance costs and initial investment costs. Cloud-Enabled Data Sharing Model protects data privacy on the cloud, at the same time, allowing multiple users accessing the shared database with security assurance. Re-encryption after completion of each task is very costly.

4. ATTRIBUTE-BASED ACCESS CONTROL WITH EFFICIENT REVOCATION IN DATA OUTSOURCING SYSTEMS [4]

Cipher text-policy attribute-based encryption is a promising cryptographic solution to these issues for enforcing access control policies defined by a data owner on outsourced data. However, the problem of applying the attribute-based encryption in an outsourced architecture introduces several challenges with regard to the attribute and user revocation. In this paper, we propose an access control mechanism using ciphertext-policy attribute-based encryption to enforce access control policies with efficient attribute and user revocation capability. ABE scheme is used for user revocation with access control. If multiple users collude, they may be able to decrypt a ciphertext by combining their attributes even if each of the users cannot decrypt the ciphertext alone. These colluders should not succeed in decrypting the data.

5. ENERGY-EFFICIENT FAULT-TOLERANCE IN MOBILE [5]

The advances in hardware for hand-held portable devices, resource-intensive application still remain off bounds since they require significant computation and storage capabilities. These issues are addressed by employing remote servers, such as clouds and peer mobile devices. However, for mobile devices deployed in dynamic networks challenges of reliability and energy efficiency remain largely unaddressed. These challenges are addressed by an approach called as k-out-of-n computing. Efficient access control management. Due allowance of k times incorrect input, it is less secure system.

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | | Impact Factor: 7.542 |

|| Volume 9, Issue 7, July 2021 ||

| DOI: 10.15680/LJIRCCE.2021.0907023 |

6. SCALABLE AND SECURE SHARING OF PERSONAL HEALTH RECORDS IN CLOUD COMPUTING USING ATTRIBUTE-BASED ENCRYPTION [6]

To assure the patients' control over access to their own PHRs, it is a promising method to encrypt the PHRs before outsourcing. Yet, issues such as risks of privacy exposure, scalability in key management, flexible access, and efficient user revocation, have remained the most important challenges toward achieving fine-grained, cryptographically enforced data access control. Novel patient-centric framework and a suite of mechanisms for data access control to PHRs stored in semi trusted servers. Can support multiple authorities. On-demand user revocation then user private Id & information will not change.

7. MONA: SECURE MULTI-OWNER DATA SHARING FOR DYNAMIC GROUPS IN THE CLOUD [7]

With the character of low maintenance, cloud computing provides an economical and efficient solution for sharing group resource among cloud users. Unfortunately, sharing data in a multi-owner manner while preserving data and identity privacy from an entrusted cloud is still a challenging issue, due to the frequent change of the membership. Dynamic Group are used by user & generated Bilinear Map Not centralized system.

8. PRIVACY PRESERVING POLICY BASED CONTENT SHARING IN PUBLIC CLOUDS [8]

An approach is to encrypt documents satisfying different policies with different keys using a public key cryptosystem such as attribute-based encryption (ABE), and/or proxy re-encryption (PRE). However, such an approach has some weaknesses: it cannot efficiently handle adding/revoking users or identity attributes, and policy changes; it requires keeping multiple encrypted copies of the same documents; it incurs high computational costs. New Key management scheme are called as the broadcast group key management (BGKM). User Private is without utilizing cryptography send to another user.

9. SECURE OVERLAY CLOUD STORAGE WITH ACCESS CONTROL AND ASSURED DELETION [9]

It associates outsourced files with file access policies, and assuredly deletes files to make them unrecoverable to anyone upon revocations of file access policies. To achieve such security goals, FADE is built upon a set of cryptographic key operations that are self-maintained by a quorum of key managers that are independent of third-party cloud. Backup and recovery are used and also access control is used along with assured deletion. Dynamic file management at same time not implemented.

10. STRONG KEY-EXPOSURE RESILIENT AUDITING FOR SECURE CLOUD STORAGE [10]

Client doubt whether data is stored correctly in cloud or not. Indeed, security key might be explored due to weak security sense. Once malicious cloud gets the client secret key for cloud storage auditing, it can hide the data loss incidents by forging the authentication of fake data. Key update techniques are based on binary tree structures and hence provide protection and security of authentication. When key exposure happens it often cannot be found out at once. Key exposure might be difficult to be found out because the attacker might stop intrusion at once when it gets the client security key.

11. TOWARD SECURE AND DEPENDABLE STORAGE SERVICES IN CLOUD COMPUTING [11]

Cloud storage enables users to remotely store their data and enjoy the on-demand high quality cloud applications without the burden of local hardware and software management. Auditing mechanism of cloud servers at very less communication and computation cost is proposed here. Fast data error localization and secured dynamic operations on outsourced data. Third party auditor usage is possible. Flexible storage integrity and auditing mechanism. No techniques mentioned to control fraudulent attacks.

12. COOPERATIVE PROVABLE DATA POSSESSION FOR INTEGRITY VERIFICATION IN MULTI CLOUD STORAGE [12]

Provable data possession (PDP) is a technique for ensuring the integrity of data in storage outsourcing. Here, we address the construction of an efficient PDP scheme for distributed cloud storage to support the scalability of service and data migration. Here, Homomorphic variable response and hash index hierarchy are introduced. Not dependent on

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | | Impact Factor: 7.542 |

|| Volume 9, Issue 7, July 2021 ||

| DOI: 10.15680/IJIRCCE.2021.0907023 |

a single CSP. Hash index hierarchy helps in proper integration. Dynamic scaling facility on multiple storage servers. Integrating this CPDP with existing systems is challenging. It is still a challenging problem for the generation of tags with the length irrelevant to the size of data blocks. We would explore such an issue to provide the support of variable-length block verification.

13. ENABLING DYNAMIC DATA AND INDIRECT MUTUAL TRUST FOR CLOUD COMPUTING STORAGE SYSTEMS [13]

It allows the owner to outsource sensitive data to a CSP, and perform full block-level dynamic operations on the outsourced data, i.e., block modification, insertion, deletion, and append. It enables indirect mutual trust between the owner and the CSP, and it allows the owner to grant or revoke access to the outsourced data. Dynamic Operation performances at Block Level & indirect trust between data Owner and CSP. Security is less because direct communication between clouds & Owner.

14. CLINICAL PROCESS IN BLOCK CHAIN FOR PATIENT SECURITY IN HOME CARE [14]

It is explained here how a solution for data privacy, and specifically for cognitive security, can be enforced and guaranteed using block chain technology in SAAL (Smart Ambient Assisted Living) environments. Consensus, Provenance, Immutability, Finality. No blocking mechanism introduced if continues attack from same source is found.

15. BLOCK CLOUD: A BLOCK CHAIN-BASED SERVICE-CENTRIC NETWORK STACK [15]

Connecting hundreds of devices, the Internet of Things (IoT) usage has become a technology with large influence in people's life. However, the future is threatened by frail connectivity, poor scalability, absent trust, cracked security and broken business model. Ubiquitous service and good scalability. Protects profit of both service providers and user of the network. Low Accuracy, Less Optimization of result.

III. CONCLUSION

The community data exchange of computers in the cloud has created a new field of utility for information networks as a breakthrough of Internet infrastructure and cryptography. The safety and reliability of community data storage in cloud computing can be increased significantly with the aid of the conference key agreement protocol. In particular, the data owners' outsourced data encrypted by the standard conference key are shielded from adversary attacks. The conference key agreement has characteristics of better security and stability compared to the conference key delivery. The main agreement of the meeting, however, requires a considerable volume of machine knowledge and computing interaction.

REFERENCES

- [1] A. Bessani, M. Correia, B. Quaresma, F. Andr'e, and P. Sousa, "Depsky: dependable and secure storage in a cloud-of-clouds," ACM Transactions on Storage (TOS), vol. 9, no. 4, p. 12, 2013.
- [2] H. Chen, Y. Hu, P. Lee, and Y. Tang, "Nccloud: A network-coding-based storage system in a cloud-of-clouds," 2013.
- [3] T. G. Papaioannou, N. Bonvin, and K. Aberer, "Scalia: an adaptive scheme for efficient multi-cloud storage," in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. IEEE Computer Society Press, 2012, p. 20.
- [4] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Madhyastha, "Spanstore: Cost-effective georeplicated storage spanning multiple cloud services," in Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM, 2013, pp. 292–308.
- [5] T. Suel and N. Memon, "Algorithms for delta compression and remote file synchronization", 2002.
- [6] ShubhangiSuryawanshi, Shubhangisuryawanshi, PramodPatil, "Email Spam Detection: An Empirical Comparative Study of Different ML and Ensemble Classifiers", 2019 IEEE 9th International Conference on Advanced Computing (IACC).
- [7] S.Kamara and K. Lauter, Cryptographic cloud storage, in Proc. Int. Conf. Financial Cryptography Data Security, Jan. 2010, pp. 136149.
- [8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, A view of cloud computing, Commun. ACM, vol. 53, no. 4, pp. 5058, Apr. 2010
- [9] M.Kallahalla, E.Riedel, R.Swaminathan, Q.Wang, and K.Fu, Plutus: Scalablesecure file sharing on untrusted storage, in Proc. USENIX Conf. File Storage Technol., 2003, pp. 2942.

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| www.ijircce.com | | Impact Factor: 7.542 |

|| Volume 9, Issue 7, July 2021 ||

| DOI: 10.15680/LJIRCCE.2021.0907023 |

- [10] E. Goh, H. Shacham, N. Modadugu, and D. Boneh, Sirius: Securing remote untrusted storage, in Proc. Netw. Distrib. Syst. Security Symp., 2003, pp. 131145.
- [11] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, Improved proxy re-encryption schemes with applications to secure distributed storage, in Proc. Netw. Distrib. Syst. Security Symp., 2005, pp. 2943.
- [12] C. Delerablee, P.Paillier, and D. Pointcheval, Fully collusion secure dynamic broadcast encryption with constant-size Ciphertexts or decryption keys, in Proc. 1st Int. Conf. Pairing-Based Cryptography, 2007, pp. 3959.
- [13] R. Lu, X. Lin, X. Liang, and X. Shen, Secure provenance: The essential of bread and butter of data forensics in cloud computing, in Proc. ACM Symp. Inf., Comput. Commun. Security, 2010, pp. 282292.
- [14] Mona: Secure Multi-Owner Data Sharing for Dynamic Groups in the Cloud Xuefeng Liu, YuqingZhangBoyang Wang, and Jingbo Yan 2013 IEEE.
- [15] B. Waters, Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization, in Proc. Int. Conf. Practice Theory Public Key Cryptography Conf. Public Key Cryptography, 2008, pp. 5370.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH

IN COMPUTER & COMMUNICATION ENGINEERING

📵 9940 572 462 🔯 6381 907 438 🖂 ijircce@gmail.com

