

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 6, June 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0306135 5966

Software Rejuvenation and Workload
Distribution in Virtualized System

Payal Kulkarni

PG Student, Department of Computer Engineering, RMD Sinhgad School of Engineering, University of Pune,

Pune, India

ABSTRACT: Cloud computing is a promising paradigm where applications, data, memory, bandwidth and IT
services are provided over the Internet. Cloud computing is a technique based on pay per usage model .It allows use
of hardware resources by a technique called as virtualization. Virtualization is a technique having one or more VM’s
which is monitored by virtual machine monitor. In this work we propose a technique to enhance the performance of
VM under variable workload conditions. We also propose a fixed timer policy and a methodology for rejuvenating
high available virtualized system also for Detection and Estimation of Software Aging,”

KEYWORDS: Time-based rejuvenation, cloud computing, dynamic availability, Virtualization, performance
enhancement

I. INTRODUCTION

Cloud computing is an emerging infrastructure paradigm that allows efficient maintenance of cloud with efficient
uses of servers. Cloud is a package of services that offers infrastructure, platform, software and data as services. So
many researches are being made for improving these flavours of services. Resource availability can be increase due
to elastic behavior of cloud. Cloud computing offers their customer to pay only what they use. We can buy any
software or service for required period of time on the cloud rather than to purchase a machine for that purpose.

Software rejuvenation [6] deals with software faults. It is called as fault management technique as it prevent
occurrence of one or more failure. Software rejuvenation is the concept of gracefully terminating an application and
immediately restarting it with a refreshed internal state. Software rejuvenation solves software aging by minimizing
failures through periodic, preemptive rollback of applications and server reboot. The most straightforward way is to
manually reboot the server periodically, and users often do this. Manual reboot minimizes the above-mentioned
problems or prevents them from occurring by not allowing the allocation of internal resources to reach critical levels
Virtualization is a technique which allows to instantiate multiple virtual machines (VMs) on top of a physical
machine managed by the virtual machine monitor (VMM). Attention has been put in the literature to the possibility
of applying rejuvenation to mitigate the effect of software aging in the VMM as software degradation mainly affects
long term running software and services. The resource utilization can be maximized by using live VM migration for
shifting of VMs when VMMs are rejuvenated.

Contribution of present work is fixed timer policy in which timer is set at the system start up and does not change
with respect to workload condition. Another contribution of present work is shifting of application on number of
virtual machine to avoid workload.

II. RELATED WORK

Jie Li, and Dengyi Zhang, [7] focus on software rejuvenation ,a proactive fault management technique aimed at
cleaning up the system internal state to prevent the occurrence of more severe crash failures .It involves occasionally
terminating an application or a system, cleaning its internal state and restarting it.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 6, June 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0306135 5967

DomenicoCotroneo, and Roberto Natella [6] focus on Software Aging and Rejuvenation in a Soap-Based Server
software aging is degradation of software performance or sudden crash or hang of system it can be called as increase of
failure rate or decrease of software performance.

Kenichi Kourai, and Shigeru Chiba [11] focus on A Measurement-Based Model which is used for Estimation of
Resource Exhaustion in Operational Software Systems basic idea is to periodically monitor and collect data on the
attributes responsible for determining the system health.

F. Machida & D. Kim proposed a technique to reduce the system downtime during the rejuvenation. VM and VMM
rejuvenations in cloud environments are investigated in [12] through the use of analytical techniques. In [12], the
authors highlight the need to rejuvenate the VMs as well as the VMM, measuring the advantages obtained in terms of
system availability. Three different rejuvenation schemes are proposed starting from the concept that a VMM
rejuvenation affects the running VMs. According to these schemes, each time the VMM is rejuvenated the running
VMs can be suspended, rebooted, or migrated.

Fumio Machida, Dong Seong Kim [10] focus on Analysis of Service Availability for Time-Triggered Rejuvenation
Policies which consist of two policies .The main goal of time-based rejuvenation models is to find an optimal
rejuvenation timer that allows minimizing some objective functions. Usually, the timer is set at system start-up and it
does not change with respect to the system dynamics (e.g., system workload variations).

We refer to such kind of approach as fixed timer policy. Another contribution of the present work is the specification of
a time-based policy adapting the rejuvenation timer to the VMM conditions, taking into account its workload and age
(variable timer policy). The effectiveness of the proposed modelling technique is demonstrated through a numerical
example based on a case study taken from the literature. It shows how the proposed variable timer policy outperforms
the fixed one in terms of improved system availability also varying the way failure rates are affected by the workload.

M. Neuts focus on Probability Distributions of Phase Type a phase-type distribution is a probability distribution
constructed by a convolution of exponential distributionsit results from a system of one or more inter-related Poisson
processes occurring in sequence or phases. The sequence in which each of the phases occurs may itself be a stochastic
process. The distribution can be represented by a random variable describing the time until absorption of a Markov
process with one absorbing state. Each of the states of the Markov process represents one of the phases. It has a discrete
time equivalent the phase type distribution. The set of phase-type distributions is dense in the field of all positive-
valued distributions, that is, it can be used to approximate any positive-valued distribution .Consider a continuous-time
Markov process with m + 1 states, where m ≥ 1, such that the states 1,...,m are transient states and state 0 is an
absorbing state.

AutranMacêdo, Taís B [5] have proposed work on memory related aging effects. The authors have explained how
memory management works inside application process, focusing on two memory problems that cause software aging:
fragmentation and leakage. Here they have explained the procedure of memory-related software aging focusing on a
real and widely adopted memory allocator and presented an experimental study that illustrates how memory
fragmentation and leakage occur and how they accumulate over time in order to cause system aging-related failures.
Fumio Machida et al. have presented the issues of performability management in a virtualized data center (VDC) that
hosts multiple services using virtualization. Performability is a concept of a mixed metric of performance and
availability. The users of a VDC generally request a certain level of application performance in a service level
agreement (SLA). VDC providers need to decide an optimal server configuration and management operations for
guaranteeing application performance and maximizing the availability. They have focused on placement algorithm of
VMs and rejuvenation schedules for VMs and VMM in a VDC.

III. PROBLEM STATEMENT

Aim of this work is to propose a new innovative approach to model software aging in cloud system and also in

LAN network and we propose a technique to model and to evaluate the VMM aging process and to investigate the
optimal rejuvenation policy that maximizes the VMM availability under variable workload conditions.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 6, June 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0306135 5968

IV. PROPOSED SYSTEM

Figure: 1 System Design

A cloud infrastructure is composed of network-connected cloud nodes coordinated by a cloud management system. A
cloud node can be a workstation or a multicore system, a cluster, or also a data center, implementing a stand-alone
administrative domain with its management system. To improve node availability, software rejuvenation
Policies can be adopted.
Fig 1 consists of mainly two modules/parts which are again divided into sub modules.
These main two main modules are,

1. VMM
2. Node

VMM is a virtual machine monitor, having higher level of physical machine. But in actual implementation, VMM is a
virtual machine residing on a physical machine. Hence our application can consist of a VMM application located on
physical machine, for which, here after, we are called as VMM manager or only as manager. The node is nothing but a
machine which is under monitoring by VMM manager it must be workstation such that a physical machine connected
in network. Hence, nodes are physical machines, might be slaves or clients connected in network, either internet or
intranet (lan), and manager becomes their server. As workload occurs in the VM 1 instruction is given to VMM for
monitoring application VMM then gives response to the vm1 for shifting application form vm1 to VM2.

A .Technique used

 Fixed timer policy
The timer is set at system start-up and it does not change with respect to the system dynamics (e.g., system workload
variations).
 Measurement based
The basic idea is to periodically monitor and collect data on the attributes responsible for determining the system health

 Model based

The model-based approach focuses on analytical models representing the system behaviour to investigate the costs/
benefits associated with rejuvenation.

B.Proposed algorithm
 Proposed algorithm steps are as below:
1. While implementing proposed algorithm, it would be assumed that all data was stored at central server.
2. Get details of virtual machine a (vm[a])
3. Get total running applications on vm[a]
4. Count total memory occupied by all running applications on vm[a] and its status
5. If status is running then jump to step 5 and if status is not responding jump to step 10
6. Consider/assume threshold memory
7. If memory occupied on VM [a] is greater than threshold memory, then find out the application occupying max

memory

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 6, June 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0306135 5969

8. Initiate look method to find any other VM , called as VM [b] in same network having (total memory occupied +
memory of considered application on VM [a]) less than its threshold memory

9. If found, send ‘application close’ command to VM[a] and ‘application start’ command to VM [b] (shift application
from VM[a] to VM [b])

10. If not found, send instruction ‘application close’ on VM [a]
11. If application was not responding, send instruction ‘application close’ on VM [a] to forcefully close the application
12. Repeat steps 1 to 8 after pre- defined period

C.Algorithm_VM check

1. Enter vm check state at tp (periodic time)
2. If check=true, while(i<n) { vmm(app[i]) = vm(app[n])} (where n=total number of running applications and

app[i]=ith running application)
3. While(i<n) { mem[tot]=mem[tot] + mem[i] }
4. Memth = (vm_config/100)*per) (at initial value of per should be considered as 5%)
5. If (mem[tot]<memth)

a. { if (look(vm(otthr) =true)
b. {while(i<n) { if (((mem[tot]) - (mem[app[i]))>memth)
c. { m(othr){ (app[i]} = vm{ (app[i] }}}

6. .if ((mem[tot]<memth) and (vm(target)==0))
a. { while(i<n) { if (((mem[tot]) - (mem[app[i]))>memth)
b. {close(app[i] }}}

D.Algorithm-performance monitoring

1. Read task manager of machine, for understanding, number of applications running at given time, memory used
by them, and status of applications such that whether they are running or get hanged.

2. Check memory space available on each drive, to check whether that drive is running out of memory.
3. Try to distinguish between network applications, such that the applications which are used by network users

and local applications such that application which are accessed only on local machine.
4. Send all above collected information to vmm manager for monitoring.
5. Check for any instructions from vmm manager and follow them.
6. All these tasks are performed at regular intervals set by vmm.

E. Mathematical model

 Identify the cloud infrastructure
 c= {c1, c2, c3….}
 Identify the virtual machine monitors (vmm)
 v= {vmm1, vmm2, vmm3….}
 v € c (v is a subset of c, such that cloud contains various virtual machine monitors)
 Identify the virtual monitors
 m = {vm1, vm2, vm3 …}
 Identify the running applications
 a = {a1, a2, a3….}
 Identify the instructions
i= {i1, i2, i3…}
 Evaluate the algorithm
algo= {al1, al2, al3}

A1) analysis virtual machine:

Input: a set of running applications on vm,
Output: status of vm in terms of memory and applications state

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 6, June 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0306135 5970

 mtot = m(a1) + m(a2) + m(a3) + + m(an)
A2) load balancing

Input: output of al1
Output:instruction to vm& load balancing
Let,
Identify the heavy application of vm

 ah = {set of heavy applications} = {ah1, ah2, ah3 . . . }
 where, ah € a

If (application was consuming more memory) then instruct shift
A3) rejuvenation

Input: an output of algorithm al1
Output:either application was terminated or restarted
let,
Identify the failure applications
Af = {set of failure application)
If (application was not responding) then instruct terminate

[4.6] practical work

Figure: 2 admin login

Figure: 3 server view1

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 6, June 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0306135 5971

Figure: 4 server view 2

Figure: 5 server view 3

Figure: 6 server view 4

[5] Result
Fig 7 shows graph for system availability at initial time period system is highly available .Fig 8 shows graph for
memory Occupation which shows that as soon as memory used become more than threshold value one of the
application get closed and used memory get back to under threshold value.
`

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 6, June 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0306135 5972

Figure: 7 graph for system availability

Figure: 8 graph for memory occupation for system

IV. CONCLUSION AND FUTURE SCOPE

In this paper we have discussed how performance of the system can be increased in case of heavy workload using vmm
.we also deal with software rejuvenation, a specific form of environment diversity that is gaining importance as an
effective preventive maintenance technique. The main contribution of our work is a measurement-based model that
integrates the effect of system workload on operating system resources and an approach to investigate its effect on
software aging. Since many studies have suggested strong correlations between workload and system reliability/
availability, this model is an improvement over the purely time-based model. We have also distinguished relation
between the system workload and resource exhaustion.

We are trying to extend proposed technique in 1) along with wired and wireless LAN i.e. In intranet, in future; we are
going to try to implement this application in internet environment. 2) Implementation of application in internet i.e. in
global network which does not restrict by any boundaries and hence it was becomes possible to monitor and take care
of any machine from anywhere.3) also, along with solution to software failures, hardware failures detection and their
solution are to be included in future

REFERENCES

[1]workload-based software rejuvenation in cloud systems “IEEE transaction on computer 2013”
[2] Michael Grottke, RivalinoMatias Jr., and Kishor S. Trivedi, “The Fundamentals of Software Aging," IEEE, 2008
[3] DomenicoCotroneo, Roberto Natella, , Roberto Pietrantuono, and Stefano Russo, " A Survey of Software Aging and Rejuvenation Studies,"
ACM, Vol 5
[4] "Software Aging and Rejuvenation," Wiley & Sons, 2008
[5] AutranMacêdo, Taís B. Ferreira, and RivalinoMatiasJr, "The Mechanics of Memory-Related Software Aging," IEEE, 2011
[6] DomenicoCotroneo, and Roberto Natella, “Monitoring of Aging Software Systems affected by Integer Overflows," IEEE, 2012
[7] Kehua Su, Hongbo Fu, Jie Li, and Dengyi Zhang, "Software Rejuvenation in Virtualization Environment," IEEE, 2011
[8] JyotiprakashSahoo, SubasishMohapatra and, Radha Lath, "Virtualization: A Survey On Concepts, Taxonomy and Associated Security Issues,"
IEEE, 2010

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 6, June 2015

Copyright to IJIRCCE DOI: 10.15680/ijircce.2015.0306135 5973

[9] Kenichi Kourai, and Shigeru Chiba, "Fast Software Rejuvenation of Virtual Machine Monitors," IEEE, Vol 8, No 6, 2011
[10] Fumio Machida, Dong Seong Kim, Jong Sou Park, and Kishor S. Trivedi, “Toward Optimal Virtual Machine Placement and Rejuvenation
Scheduling in a Virtualized Data Center," IEEE, 2008
[11] Kenichi Kourai, and Shigeru Chiba, "A Fast Rejuvenation Technique for Server Consolidation with Virtual Machines, " IEEE, 2007
[12] Fumio Machida, Jianwen Xiang, Kumiko Tadano, and Yoshiharu Maeno, "Combined Server Rejuvenation in a Virtualized Data Center”

BIOGRAPHY

Payal Kulkarni Research Scholar RMD Sinhgad School of Engineering Warje, Pune, University of Pune. Received
B.E. in Information technology from Information Technology Department of MastyodariShikshanSanstha’s College of
Engineering, Jalna fromDr.BAMU. University, Aurangabad.Currently persuing M.E. in computer engineering from
RMD Sinhgad School Of Engineering Warje, Pune, India.

