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ABSTRACT:   Testing i s  t h e    most   important   analytic   quality assurance measure  for software.  The 

systematic design o f  test cases is crucial for test quality.  Structure - oriented test methods, which  define  test  

cases  on  the    basis  of  the  internal  program structures, are widely  used test data generation in program testing is 

the process  of identifying  a set of  data  which satisfies  given testing  criterion.  Most of the existing test data 

generators u se  symbolic evaluation to derive test data. 

Evolutionary    testing   is   a   promising   approach    for   the automation of structural test case design which 

searches test data that fulfill given structural test criteria by means of evolutionary computation.   In  this   paper   

we  present   our  evolutionary   test environment, which performs fully automatic test data generation for  most  

structural  test  methods  based  on  actual  execution  of statistical testing through poisson distribution. We shall 

report on the results gained from the testing of real-world software modules. For most modules we reached full 

coverage for the structural test criteria. 

 

KEYWORDS: Test Data Generation, Poisson distribution, Evolutionary Test, Structural Test case Design. 

 

 

I.INTRODUCTION 

 

A  great  number  of  today‘s  products  is  based  on  the deployment of embedded systems. In industrial 

applications embedded  systems are predominantly used  for controlling and monitoring technical processes.  There 

are examples in nearly   all   industrial   areas,   for   example   in   aerospace technology, railway and motor  vehicle 

technology, process and  automation   technology,   communication   technology, process  and  power   engineering,  

as  well  as  in  defense electronics.   Nearly  90%   of   all   electronic   components produced today are used in 

embedded systems. 

 

In order to achieve high quality in the development  of embedded   systems,  central   importance   is   attributed  

to analytical quality assurance. In practice, the most important analytical  quality  assurance  measure  is  dynamic  

testing. Thorough testing of the systems  developed is essential for product quality. The aim of the test is to detect 

errors in the system  under  test,  and,  if   no  errors  are  found  during comprehensive testing, to convey 

confidence in the correct functioning of the system. This is the only procedure which allows the  testing of 

dynamical system behavior in a real application environment. 

 

The  most  significant  weakness  of  the  test  is  that  the postulated functioning of the tested system can, in 

principle, only be verified for those input situations  selected as test data.  Testing  can  only  show  the  existence  

and  not  the nonexistence of errors. Therefore, the correctness proof can only be produced by a complete test. In 

practice, a complete test,  with  the  exception  of   a  few  trivial  cases,  is  not executable  because  of  the  

enormous  amount  of  possible input  situations.  Thus,  the  test  is  a  sampling  procedure. Accordingly,  a  task  

which  is  essential  to  testing  is  the selection  of  an  appropriate  sample  containing  the  most error-sensitive 

test data. 
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Among the different test activities (test case design, test execution,  monitoring,  test  evaluation,  test  planning,  

test organization, and test documentation – see Fig. 1) test case design is of essential importance. 

 

 
 

Figure 1: structure of test case generation 

 

II.  AUTOMATIC TEST-DATA GENERATION 

 

Automated test-data generators can be divided into  

Three classes  –  random,  static  and  dynamic.  Random  test-data generation is easy to automate, but problematic 

[7–9]. First, it   produces   a   statistically   insignificant   sample   of   the 

possible  paths  through  the  software  under  test   (SUT). Second,  it  may  be  expensive  to  generate  the   

expected output-data  for the  large  amount  of input  data  produced. Finally, given that exceptions occur  only  

rarely, the input domain  which  causes  an  exception  is likely to  be  small. Random  test-data   

 

generators  may never  hit on this small area  of  the  input  domain.  Static  approaches  to  test-data generation 

generally use symbolic execution. Many test-data generation   approaches   presented   in   the   literature   use 

symbolic  execution  to  obtain  structural  test-data  [10–14]. Symbolic  execution  works  by  traversing  a  control  

flow graph of the SUT and building up symbolic representations of the internal variables in terms of the input 

variables, for the   desired   path.   Branches   within   the   code  introduce constraints on the variables.  Solutions 

to these constraints represent the desired test-data. A number of problems exist with this approach. Using 

symbolic execution it is difficult to analyses recursion, array indices which depend on input data and some loop 

structures. Also, the problem of solving arbitrary constraints is known to be non decidable. 

Dynamic test-data generation involves execution of  the SUT  and  a  directed  search  for  test-data  that  meets  

the desired criterion. The dynamic approach was first suggested in 1976 by Miller [15]. The work of Korel et al. 

built on this using locally directed search  techniques [8,16–18]. This is further  expanded  by  Gallagher  et  al.  

[19].  Local  search techniques  only   work  effectively  for  linear  continuous functions.   Consequently,  these  

techniques  are  likely  to become  stuck  at  a  local  optimum  and  fail  to  locate  the required    global    optimum    

[20].   The    use    of    global optimization techniques for dynamic test data generation has been investigated more 

recently in an attempt to overcome this limitation [9,20–22]. 

 

III. THE TEST-DATA GENERATION PROBLEM 

 

A   control   flow-graph   is   a   directed   graph   which represents  the  control  structure  of  a  program.  It  can  
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be described as follows [19]: G = (N,E, s, e), where N is a set of nodes, E is a set of edges of the form (ni, nj ) 

represents a possible transfer of control from the basic block ni to the basic block nj . For branch instructions the 

edges are associated with a branch predicate. This  describes the conditions which must hold for the branch to be 

taken. 

A program is driven down a path in the control  flow graph  by the  values  of its input  variables  and the  

global state. These can be described as the vector x = αx1, x2, . . . xnα.  Each  variable  will  have  an  associated  

domain,  Di  , which can be determined from the variable‘s type. The total input space can be defined  as the cross-

product of each of these domains, D = D1  ×  D2 × ·  ·  ·  × Dn.  

 

3.1. Raising exceptions 

Firstly,  consider  the  case  of a user-defined  exception. User-defined exceptions must be explicitly raised in Ada 

by executing the raise statement. Assuming the raise statement 
is contained in basic block ni ∈ N (more accurately 

a raise statement will always be the last statement in a basic-block as it causes an unconditional branch), the 

problem of testing the raising of a user- 

 

Predefined   exceptions   are   raised   when   the language rules are violated at run-time and in  response to 

hardware errors. Test-data alone cannot test  the raising of exceptions   in   response   to   hardware   errors.   For   

these hardware errors integration with a fault injection technique [20] is required. The focus, in this paper, is the 

generation of test-data  which  violates  run-time  language  rules.  In  Ada there are a number of predefined 

exceptions [5]: 

Constraint Error – data going out of range. Program Error – control-structure violation. Storage Error – running out of 

storage space. Tasking Error – general communications failure between tasks. 

Our major concern is the development of software  for safety critical systems. This type of development  is  

often carried out using a ‗safe‘ subset of a language. This allows the application of static analysis and  potentially 

proofs to show  adequate  system  safety.   Our   major  concern  with testing  has  been  these  kinds  of  systems,  

hence  we  have focused on the SPARK-Ada language [21,22]. SPARK-Ada allows  testing  for  Constraint  Error  

exceptions  to  be  the focus of the  work to date. The SPARK-Ada tool-set [21] mitigates against other pre-

defined exceptions through 

language  restrictions  or  static  analysis.  Tasking  Error cannot  occur as Ada tasking is not  part of  SPARK  

Ada. Storage Error is also unlikely to occur as dynamic memory allocation   is   not   being   used   and    therefore   

storage requirements  can  be  calculated  statically.  The  situations where Program Error  exceptions can occur are 

detected by the SPARK Examiner static analysis tool. 

 

3.2. Automated test data generation (ATDG) 

Most of the work on Software Testing has concerned the problem of generating inputs that provide a test  suite  

that meets  a  test  adequacy criterion.  The  schematic representation is presented  in  Fig.3. Often 

this problem of generating  test  inputs   is  called  ‗Automated   Test  Data Generation (ATDG)‘  though, strictly 

speaking, without an oracle, only the input is generated. 

Fig.2 illustrates the generic form of the most  common approach in the literature, in which test inputs are 

generated according to a test adequacy criteria [6]. 
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Figure 2: Evolutionary Test Environment Automated Test Data Generation 

 

IV. EVOLUTIONARY TESTING 

 

Evolutionary   Testing   (ET)   [18]   is   a   search-based software testing approach based on the theory of 

evolution. It formulates the task to generate relevant test data (relevant in terms of the testing objective at hand, such 

as maximizing structural coverage) as one or several search problems. Each search problem consists of the definition 

of the search space based on the  input domain of the target program (e.g., its relevant   parameters),   and   a   

fitness   function   that   ET constructs. In the case of structural testing, such a  search problem aims at finding a 

test data leading to the coverage of a particular branch. Each search problem is  tried to be solved using an 

evolutionary algorithm: a pool of candidate test data, the so-called individuals, is iteratively manipulated by  

applying  fitness  evaluation,   selection,  mutation,  and crossover in order to eventually obtain a relevant test data. 

Better  fitness  values  are  assigned  to  individuals  that  are better able to solve the search problem at hand, e.g., 

coming closer to covering the target branch during execution. [11]. 

 

 
 

Figure 3: Structure of Evolutionary Testing 

 

4.1. Evutionary test environment 

In  order  to  automate  test  case  design  for   different structural testing methods with evolutionary  tests we 

have developed   a   tool   environment   which   consists   of   six components: 
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• Parser for the analysis of test objects, 

•  Graphical  user interface  for the  specification  of  the input domain of the test objects, 

•   instrumented   which   captures   program   structures executed by the generated test data, 

• test driver generator which generates a test bed running the test object with the generated test data, 

•  test  control  which  includes  the  identification   and administration  of  the  partial  aims  for the  test  and  

which guarantees an efficient test by defining a  processing order and storage of initial values for the partial aims, 

• toolbox of evolutionary algorithms to generate the test data. 

 

4.2. parser 

The  parser  identifies  the  functions  in  the  source  files which  form  the  possible  test  objects.  It   determines  

all necessary structural information on the test objects. Control- flow and data-flow analyses are  carried out for 

every test object. These analyses determine the interface, the control- flow graph, the  contained branching 

conditions with their atomic  predicates, as well as semantic information on the used  data structures,  e.g. the 

organization  of user-defined data types. 

GUI for interface specification To ensure efficient  test data generation and to avoid the generation of 

inadmissible test data from the beginning, the tester may have to define the  test  object  interface  determined  by  

the  parser  more precisely. For this, the developed tool environment provides a graphical user interface that  

displays the test objects and their interfaces as they have been determined by the parser. The   tester   can   limit   

the   value   ranges   for   the   input parameters and enter logical dependencies between different input parameters. 

These will then be considered during test data generation. It is also possible to enter initial values for single or for 

all input parameters. As a result, test data of a previous test run or data of an already existing  functional test, as 

well as specific value combinations for single input parameters,  can  be  used  as  a  starting  point  for  test  data 

generation (seeding). 

 

4.3. Test driver generator 

The test driver generator generates a test bed that  calls the test object with the generated individuals and returns 

the monitoring   results   provided   by   the   execution   of   the instrumented test object to the test  control. When 

the test object is called by the test driver, the individuals are mapped onto the interface of the test object. It is 

important that user specifications  for  the  test  object  interface  are  taken  into account. Individuals that do not 

represent a valid input are extracted and assigned a low fitness value. 

 

 

 
 

Figure 4: Test Case Generator for Evolutionary Testing 

 

4.4. General scheme for Test case design 

Now let us consider a given coverage criterion C. As a preliminary  remark,  note  that  the  set  of  elements  

EC(D) must be finite, otherwise the quality of test  would be zero. This implies, in particular, that the  coverage 
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criterion ―all paths‖  is  irrelevant  as  soon  as  there  is  a  cycle  in  the description,  like  in  our   example  

(figure  4).  Thus,  this criterion  has  to  be  bounded  by additional  conditions,  for example  ―all  paths  of  length  

α  n‖,  ―all  paths  of  length between given n1 and n2‖, or ―all paths which take at most m times each cycle in the 

graph‖. For the sake of simplicity, we consider in the following that paths are generated within P>n, the set of paths 

of length _ n that go from vs to ve. We consider two cases, according to the nature of  the elements of EC(D). If 

EC(D) denotes a set of paths in  the graph,  we  immediately  state  that  the  quality  of  test  is optimal if the 

paths of EC(D) are generated uniformly, i.e. any   path   has   the   same   probability   1=jEC(D)j   to   be generated. 

Indeed, if the probability of one or several paths was greater than 1=jEC(D)j, then there would exist at least one 

path with probability less than 1=jEC(D)j, therefore the quality of test would be lower. 

 

Now, we consider the case where the elements of EC(D) are not paths, but are constitutive elements of the graph 

as, for  example,  vertices,  edges,  or  cycles.  Clearly,  uniform generation of paths does not ensure optimal quality 

of test in this case. Ideally, the  distribution  on paths should ensure that the minimal probability to reach any 

element of EC(D) is   maximal.   Unfortunately,   computing   this   distribution would require the resolution as as 

many equations as paths. This   is   generally   impracticable.   Thus   we   propose   to generate a path in two steps: 

1. pick at random one element e of EC(D), according to a suitable probability distribution. 

 

2. generate uniformly at random one path of length _ n that goes through e. (This ensures a balanced  coverage  

of the set of paths which cross e.) 

 

4.5. Poisson Distribution 

Often we are interested in the number of events  which occur in a specific period of time or in a  specific  area 

of volume: 

Number  of  alpha  particles  emitted  from  a  radioactive source during a given period of time Number  of  telephone  

calls  coming  into  an  exchange during one unit of time Number of diseased trees per acre of a certain woodland 

Number   of   death   claims   received   per   day   by   an insurance company Characteristics Let  X be the  number  

of  times  a certain  event  occurs during a given unit of time (or in a given area, etc). 

The probability that the event occurs in a given unit  of time is the same for all the units. The number of events 

that occur in one unit of time  is independent of the number of events in other units. The mean (or expected) rate is 

λ. Then X is a Poisson random variable with parameter  λ and frequency function 

 

p(x) =λ x/x!*e¡ ^λ; x = 0; 1; 2; : : : 

 

4.6.Poisson distribution for an Evauationary test. 

The    problem    consists    in    choosing    the    suitable probability distribution over EC(D) in order to maximize 

the quality of test. Given EC(D) = fe1; e2; : : : ; emg, with m > 

0, the probability pi for the element ei (for any i in (1 α m)) to be reached by a path is 

 

1 

 

 

 

 

 

 

 

 

 

Indeed, the probability of choosing element ei in step 1 is _i; and the probability of reaching ei by drawing a 

random path which goes through another element ej is  αi;j αj. The above equation simplifies to 
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                2 

Let  us  illustrate  this  with  our  example.  Given   the coverage criterion ―all the edges‖ and given n = 10, Table 

1 presents the coefficients αi;j , where i and j  denote letters from ‘a‘ to ‘k‘. For example, the value ‘9‘ in row ‘f‘ 

and column ‘c‘ means that λ c;f = 9, i.e. there are exactly 9 paths of length lower or equal to 10 from vs to ve  

which cross  both  edges  c  and  f in  the  graph  of  Figure  4.   

 

The corresponding  linear  program  is  shown  in  Table  5. Each line, but the last one, is an in equation which 

corresponds to a row in Table 4. The first term of the in equation is p min, the value to be maximized. 

 

 
 

TABLE 1: Table of α i,j 

 

The second term is one of the pi‘s, computed according to Formula 2. For example, the first line means that p 

min must be lower or equal to pa, the  probability of reaching edge ‘a‘ with a random path.  By  maximizing p 

min, one maximizes  the  lowest  pi,  so  that  the  quality  of  test  is optimal. The last line  ensures that the 

probabilities λi that we are searching for sum to 1. 

 

V.  EVALUATION 

 

This section presents the results of an evaluation of the optimization  based  approach  to  generating  test  data  

for exception conditions. The evaluation has been performed in two parts. Firstly, a collection of small  Ada 95 

programs have been used to provide a preliminary assessment of the ability of the system to generate test-data to 

raise particular exceptions.    Test-data    to   achieve   exception   condition coverage has also been targeted. 

Secondly, integration of the test-data  generation  and  proof  of  exception  freeness   is evaluated   using   the   

code   for   a   civil   aircraft   engine controller. 

 

5.1  Simple examples 

A  number  of  Ada  95  programs  have  been  used  to evaluate   the   effectiveness   of   this   test-data   

generation approach.  The  routines  are  between  10  and  200  lines  of code. Square simply squares the input 

parameter. However, the data-types are defined such that  an overflow exception will be raised with large input 

values. IntSqrt is an integer square-root routine that uses a binary search algorithm. Find performs either a linear or 

binary search to locate a value in an array. A user-defined exception and handler is invoked if a binary search is 

requested on an unsorted array. 
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Table 2: Evaluation results (C - branch coverage 

of exception handlers, T - test-data generation time). 

 

Remainder calculates the remainder and quotient  given two input parameters. Tomorrow calculates tomorrow‘s 

day, date,   month   and   year   taking   into   account   leap   year calculations. User-defined error handling is used to 

validate the  input  date.  Convert   performs   conversions   between binary, octal, decimal, and hexadecimal and 

Roman numeral strings.  BigInt   Div   performs  an  integer  division  using arbitrary  length integer  abstract  data 

types.  Error seeding was  used on a number of the programs to introduce errors that allowed exceptions to be 

generated. automatically generated to test exceptions. However,  these results are only on relatively trivial 

programs. The authors‘ focus  is  the  provision  of  automatic  testing  solutions  for high-integrity   safety-critical   

systems.   A   more   detailed evaluation of the test-data generation technique is presented in the next section for such 

a system. 

 

VI.  CONCLUSIONS 

 

Many of the approaches for automated software test-data generation presented in the literature are inflexible or 

have limited capacity. Optimization techniques in contrast offer a flexible   and   efficient    approach    to   solving   

complex problems. To  allow  the  optimization based  framework  to generate  test   data   for  a  specific  testing  

criterion  it  is necessary  only  to  devise  a  suitable  fitness  function.  this paper   we  presented  our  evolutionary  

test  environment, which performs fully automatic test data generation for most structural   test   methods   based   on   

actual   execution   of statistical  testing  through  poisson  distribution.  We  shall report on the results gained 

from  the testing of real-world software modules. 

 

VII.    FURTHER WORK 

 

The results presented above show that it is possible  to use Poisson distribution to generate test-data for the 

testing of exceptions. However, more research is required in order to  assess  the  limitations  of the  approach.  The  

expression structure in the safety-critical  code was very simple. This allowed  the  automatic   simplifier  to  

discharge  the  vast majority of the  verification conditions itself. The test-data generation   could   then   be   

targeted   towards   only   the remaining  verification  conditions.  The  application  of  the test-data generation  to a 

system.  

Where exceptions can be raised from many expressions (and indeed sub expressions) may be very time consuming 

and no longer practical. A new search would be required for every possible point where an exception may be 

raised.  However, safety-critical systems by  their  very  nature  tend  to  have  simple  control-flowed expression  

structuring  as  was  the  case  with  the  engine controller code. 
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