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ABSTRACT: Swarm Intelligence (SI) is a relatively new paradigm being applied in a host of research settings to improve the 

management and control of large numbers of interacting entities such as communication, computer and sensor networks, satellite 

constellations and more. Attempts to take advantage of this paradigm and mimic the behavior of insect swarms however often 

lead to many different implementations of SI. The rather vague notions of what constitutes self-organized behavior lead to rather 

ad hoc approaches that make it difficult to ascertain just what SI is, assess its true potential and more fully take advantage of it. 

This article provides a set of general principles for SI research and development. A precise definition of self-organized behavior 

is described and provides the basis for a more axiomatic and logical approach to research and development as opposed to the 

more prevalent ad hoc approach in using SI concepts. 

The concept of Pareto optimality is utilized to capture the notions of efficiency and adaptability. A new concept, Scale 

Invariant Pareto Optimality is described and entails symmetry relationships and scale invariance where Pareto optimality is 

preserved under changes in system states. This provides a mathematical way to describe efficient tradeoffs of efficiency 

between different scales and further, mathematically captures the notion of the graceful degradation of performance so often 

sought in complex systems. 

 

KEYWORDS: swarm intelligence, self-organization, multiob-jective optimization, Pareto optima, finite-state machines 

 

I. INTRODUCTION 

 

ODAY'S communications networks have become enormously complex systems. New technologies from sensor 

networks, web-enabled PDAs, remote surgery systems to constellations of orbiting satellites all require enormous 

numbers of communicating and interacting entities. These entities must work together harmoniously to be effective. As 

the numbers of these interacting entities increases, ensuring their efficient operation becomes increasingly difficult. Indeed, 

for the past three decades this growth in general has approximately doubled every 18 months [1, p.32]. New paradigms 

of modern warfare also indicate an accelerated growth in the numbers of interacting systems. Amidst this growth, there 

is a growing consensus among experts that current network management approaches will be insufficient to handle the 

level of complexity that is envisioned
1
 [2]. Consequently, new approaches for network management and control in complex 

systems are needed. 

'As stated by the National Research Council in a report on countering terrorism: "Research is also needed for self-

adaptive networks that can reconfigure themselves in response to damage and changes in demand, and that can degrade 

gracefully." [2] 

One promising approach is based on what is often referred to as Swarm Intelligence (SI). The term SI has come to repre-

sent the idea that it is possible to control and manage complex systems of interacting entities even though the interactions 

between and among the entities being controlled is, in some sense, minimal. This notion therefore lends itself to forms of 

distributed control that may be much more efficient, scalable and effective for large, complex systems. 

The underlying features of SI are based on observations of social insects. Ant colonies and beehives, for example, 

have the interesting property that large numbers of them seem to conduct their affairs in a very organized way with 

seemingly purposeful behavior that enhances their collective survival. Surprisingly and paradoxically, these insects seem to 

utilize very simple rules of interaction. This phenomenon is very similar to those addressed in other domains of inquiry 

involving complexity such as cellular automata and the study of chaos [3], [4], [5]. These areas along with SI have 

perplexed a large number of scientists for many years [6]. How is it that "swarms" of creatures with relatively low 

brain power and communications capabilities can engage is what is often termed "emergent behavior" reflective of some 

T 
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"collective intelligence" [6, p.6] —behavior that seems to exhibit a more global purpose? 

Unfortunately, there is no widely agreed upon definition of what SI is or how it should or could be mathematically 

defined or characterized. Many terms have been associated with SI such as emergent behavior, self-organized behavior, 

collective intelligence, and the like and have been used in a variety of contexts and associated with a host of applications 

[7], [8], [9], but these terms also suffer from vague definitions or descriptions. There is no general, mathematically oriented 

description that ties all of these concepts together. 

The lack of precise definitions and, hence, theoretical foundations, poses a number of significant problems and even 

causes confusion. The lack of precise definitions is the least of the problems—this confusion also entails missed 

opportunities as well. All these different descriptions and implementations muddy the waters of how to productively utilize 

SI concepts. Without a clear understanding of what SI is and how and why it arises, it is very difficult to envision how to 

take advantage of its true potential. 

 

The remedy for this apparent confusion comes from new perspectives that illuminates the fundamental properties of 

SI. This article seeks to do just that by articulating some useful ideas based on perspectives from evolution, notions 

of efficiency, and adaptability coupled with a more formal definition of self-organized behavior. 

This article formulates three strategic or foundational frameworks from which to build a successful theory of SI and which 

provide guidelines for how to implement SI concepts. These frameworks are based on the development of the successful 

theories pertaining to the simulated annealing (SA) algorithm. The application of these frameworks to SI may provide the 

necessary yet still missing ingredients for developing a better understanding of SI. This may lead to entirely new ways of 

viewing and understanding this paradigm and ultimately allow for more practical implementation schemes. 

The most important part of this foundational triad, and a necessary ingredient for developing a solid theoretical founda-

tion for SI, is the articulation of some first principles based on the relevant laws of nature and their implications. This 

serves as a guide that governs and constrains the articulation of the other important components in developing a useful 

theory. For SI, these first principles are based on the laws of evolution and natural selection. As the reader will discover, its 

reasonable implications suggest a more precise and mathematically useful definition of self-organized behavior—the 

evolution of system states along a Pare to optimal frontier. 

The second component of this triad is the articulation of an appropriate dynamical framework, a way of 

characterizing system dynamics that is a consequence of or constrained by the first principles. The dynamical 

framework suggested here is based on a new concept in the context of SI— Scale Invariant Pareto Optimality 

(SIPO). SIPO is a powerful concept that captures notions of symmetry and scale invari-ance and can address the issues of 

how swarms of entities communicate, modify their behavior, and adapt to changing environmental conditions—one of the 

hallmarks of SI. This dynamical framework also provides a set of rules that, in effect, imposes constraints on a system's 

dynamics so as to maintain consistency with the implications of the relevant laws of nature as articulated in the first 

principles. 

Finally, the third component of this triad is the articulation of an appropriate problem framework. This provides 

useful ways to abstract these ideas and allows them to be implemented. It provides a concrete way of defining problems that 

help to further narrow the issues and focus research and development efforts. This article describes a general test-bed 

approach using the concept of swarming finite-state machine (SFSM) models. 

Together, this triad of frameworks, or meta-formalism, present a unified scheme for approaching the research prob-

lems and investigating ways to implement SI concepts. It addresses how swarms of entities must communicate and 

modify their behavior in response to information from other entities and their environment for there to exist the emergent, 

self-organized behavior known as "swarm intelligence". This set of perspectives leads to a more precise mathematical 

definition of SI, describes ways to more fully take advantage of this paradigm and, constructively address any of its 

inherent limitations. 

The rest of this article is organized as follows: Section II provides more detail on the current research 

environment regarding SI and its myriad of applications. Section III describes why the three formalisms described 

above provide a sound basis for developing the theoretical foundations of SI by describing similarities to the de facto 

frameworks associated with simulated annealing. Sections III-A through III-C describe the three frameworks on a 
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conceptual level. Finally, Section IV provides concluding remarks. 

 

II. BACKGROUND: THE SWARM INTELLIGENCE PARADIGM  

 

A. Observations of Social Insects 

 
Observations of social insects such as ants and ant colonies provide a great deal of insight into their behavior and SI in 

general. Ants and ant colonies have several ways of solving different but related problems. The main mechanism for solv-

ing them is through the use of chemical substances known as pheromones which have a scent that decays over time through 

the process of evaporation [6, p. 26]. These pheromones form the basis of what amounts to a clever, and apparently simple, 

communications and information storage and retrieval system. Since pheromone strength or intensity decays over time, it also 

provides a very simple information processing mechanism that can implement forms of positive and negative feedback [6, 

pp. 9-10, 41] and reinforcement learning mechanisms [6, p.96]. This "processing" capability is illustrated in the simplicity 

of how ants utilize and respond to pheromones. 

As an example, consider how ants actually solve shortest path problems. Their motivation for solving these problems 

stems from their need to find sources of food. Efficiency dictates that they find sources closest to their colonies. Ants 

(many ants) first set out in search of a food source by randomly choosing (apparently randomly) several different paths. 

Along the way they leave traces of pheromone [6, p. 42]. Once ants find a food source, they retrace their path back to their 

colony (and in so doing inform other ants in the colony) by following their scent back to their point of origin. Since many 

ants go out from their colony in search of food, the ants that return first are presumably those that have found the food 

source closest to the colony or at least have found a source that is in some sense more accessible. In this way, an ant colony 

can identify the shortest or "best" path to the food source [6]. 

The cleverness and simplicity of this scheme is highlighted when this process is examined from what one could conceive 

of as the ants' perspective—they simply follow the path with the strongest scent (or so it seems). The shortest path will 

have the strongest scent because less time has elapsed between when the ants set out in search of food and when they arrive 

back at the colony, hence there is less time for the pheromone to evaporate. This leads more ants to go along this path 

further strengthening the pheromone trail and thereby reinforcing the shortest path to the food source and so exhibits a 

form of reinforcement learning [6], [10], [11]. 

 

But this simple method of reinforcement or positive feedback also exhibits important characteristics of efficient group 

behavior. If, for instance, the shortest path is somehow obstructed, then the second best shortest path will, at some later 

point in time, have the strongest pheromone, hence will induce ants to traverse it thereby strengthening this alternate 

path. 

Thus, the decay in the pheromone level leads to redundancy, robustness and adaptivity, i.e., what some describe as emergent 

behavior [6]. 

Many optimization algorithms attempt to imaginatively capture some notion of SI. Indeed, many difficult optimization 

problems have been solved by so-called ant algorithms such as the Traveling Salesman Problem, the Quadratic 

Assignment Problem and other TVP-hard optimization problems (see [6] for a large number of examples and citations). 

These algorithms generally utilize some analogue of pheromone or some simple stigmergic signalling mechanism. AntNet 

[12] for example, uses reinforcement learning to increase the probabilities of using certain routes in a routing algorithm. 

The probability value is used as an analogue to pheromone. Another example is in [13] which uses a similar update 

mechanism to control unmanned aerial vehicles. These different approaches all try to take advantage of how social 

insects seem to function. These attempts to implement some SI characteristic however often are forced to creatively 

sidestep the concept of serf-organization and its implications. 

B.  The Mystery of Self-Organization 

Although much has been learned from observations of these social insects, there is no widely agreed upon definition of 

what constitutes SI. Indeed, the term SI is bandied about so often and in such a wide variety of contexts that it causes 

confusion leading to many different interpretations and implementations for various problems. Although many of these 
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implementations reflect some notion of SI, they often entail other paradigms as indicated above such as reinforcement 

learning [11], [14] and stigmergy which refers to complex indirect interactions based on simple signalling systems [6, p. 

14]. Where does one paradigm end and the other begin? Still, other research seems to freely use the term SI when there 

simply are large numbers of interacting entities (see [15] for a complete discussion on competing paradigms). Does that 

alone suffice to describe or define SI? Is it merely a way of somehow taking advantage of parallel computing methods? 

Notwithstanding the many different descriptions offered by many researchers, the main features of SI seem to involve 

forms of limited or minimal communications and/or interactions, large numbers of interacting entities with limited reach, 

and some globally efficient, emergent or self-organized behavior [6, p.9]. Bonabeau et al. [6, p.9-11] suggests that the 

central features of SI are based on the manifestation of self-organization that arise from the interplay of four basic 

ingredients: 1) forms of positive feedback, 2) forms of negative feedback, 3) the amplification of fluctuations that give rise 

to structures, and finally 4) multiple interactions of multiple entities. 

But even this characterization provides very little insight into what SI is except in very descriptive terms. For example, 

it does not fully explain in a unifying way why or how pheromones evolved in the way they did, or why they should have 

the evaporative properties they have, or why they have their chemical makeup, or how ants can somehow distinguish 

among different types of pheromone (presumably in order to identify ants from other colonies) [16, p. 156]. Pheromones 

are complex chemical signalling systems, yet most of the research that deals with them or models their effects use the 

concept in very limited ways, e.g., as a scalar in ant algorithms [14], [17] as opposed to a more complex scheme 

represented by vectors. Although, as we shall see, even simple scalars can possess enough information related to a measure 

of efficiency, pheromones are likely to have more complicated properties than their mere intensity [6]. Indeed, Wiener 

[16] in his ground-breaking book Cybernetics emphasizes the importance of intercommunication among the entities in 

question: 

How then does the beehive act in unison, and at that in a very variable, adapted, organized unison? Obviously, the 

secret is in the intercommunication of its members... This intercommunication can vary greatly in complexity and 

content . . .  the value of a simple stimulus, such as an odor, for conveying information depends not only on the 

information conveyed by the stimulus itself but the whole nervous constitution of the sender and the receiver of 

stimulus as well [16, p. 156-7]. 

However SI is described, one of its central characterizations is that of self-organization. But this also begs the question of 

what constitutes SI because there is no clear understanding of what self-organization or emergent behavior is! These terms 

have been around for some time and their definitions have been and probably will continue to be debated for some time. 

Serra et al. describes the concept of serf-organization generally as "highly organized behaviour even in the absence of 

a pre-ordained design." [18, p.1] (but what is 'organized'?). They go on to further describe examples such as the reso-

nance phenomenon in lasers, and in cellular automata where "unexpected and complex behaviours [] can be considered as 

serf-organized." [18, p.2]. 

Earlier, Prigogine
2
 et al. [5] described serf-organization in chemical reactions and thermodynamic contexts. His notion 

is quite enlightening and emphasizes the element of fluctuations in far-from-equilibrium system states. Non-linear system 

changes, fluctuations as he refers to them, due to either random events or chaotic dynamics, are then amplified by 

positive feedback mechanisms. This results in structures that emerge spontaneously which often are presented as examples 

of self-organization. It is interesting that Prigogine provides an example of SI based on the clustering behavior of termites in 

constructing termite nests [5, p.181-186]. See also [6, p.207-234]. Even earlier, Wiener [16] used the term in describing 

the brain waves of humans. See [16, Chap. 10: Brain Waves and Self-Organizing Systems]. Again, the notion of what self-

organization is remains unclear. Is it merely some structure or pattern? And if so, how is one to distinguish it from merely 

random effects? 

 

What is needed to truly take advantage of SI is more than the mere descriptions of the attributes of SI and serf-

organization. Something amenable to formal mathematical definition would be quite valuable. This article offers a new 

and potentially 

2
Prigogine won the Nobel Prize in 1977 for his work on the thermodynamics of non-equilibrium system 
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useful working definition of emergent or self-organized behavior for SI based on the imperatives of evolution and natural 

selection (as opposed to the imperatives of thermodynamics and irreversibility that elicited Prigogine's definition [5]). The 

concept of self-organization therefore plays a central role in the development of the foundational principles of SI.  

These principles are founded on the notion that self-organized behavior of the type observed in entities subject to the 

laws of evolution involves forms of efficiency in resource allocation. It emphasizes the importance of signals as mecha-

nisms of change in system states subject to the imperatives of the evolutionary pressures of natural selection. It is 

important to recognize that the response of insect swarms to external stimuli is governed by processing systems that have 

been heavily influenced and affected by the forces of evolution. This allows consideration of a much richer spectrum of 

behaviors, both simple and complex, than those implied by the mere application of positive and negative feedback 

mechanisms to simple signals. In fact, the type of self-organization described here can be framed as a form of symmetry in 

that changes in the system's behavior and operating points nonetheless leave unchanged certain attributes associated with 

these operating points, namely, their Pareto optimality [19]. In short, a novel definition of self-organization presented here 

is system behavior that maintains its operating points on or near a Pareto optimal frontier. This notion of efficiency 

constitutes a central feature of the foundational principles for SI and is described in greater detail in the next section.  

III. THE IMPORTANCE OF BASIC PRINCIPLES 

Developing a viable set of basic principles underpinning SI concepts is essential for successful implementations. The 

principles described here have a certain credibility and hence viability because they are based on how other successful 

theories appear to have been developed. This requires some discernment and creative articulation of the main features of 

how these other theories were, in fact, developed and how these features could be applied in the case of SI. The simulated 

annealing (SA) algorithm is a good example of this process and provides clues on how to articulate the corresponding 

components of the central principles underlying SI. 

A great deal of theoretical results on SA have been published in many papers and books (see e.g., [20], [21], [22], 

[25]). But this algorithm was not developed or analyzed in a vacuum. Its development was, in fact, based on the conflu-

ence of certain factors. Three main factors or components of the research evolution are discernable. The first component 

consists of a set of first principles based on the relevant laws of nature and their implications. The second component 

is an appropriate dynamical framework. Finally, the third component is an appropriate problem framework. These three 

components form the core of what can be referred to as a set of foundational frameworks. To see how these components 

provide guidance in developing a viable research strategy for SI, an understanding of how they worked together in the case 

of SA is helpful. 

In SA, the first principles were based on the laws of thermodynamics. The most salient implication of this law was that 

the entropy of a thermodynamic system, the randomness of its states, tends to its maximum value at any given temperature. 

Metropolis [23] utilized this idea in developing a method for simulating the evolution of a complex thermodynamic 

system. The underlying law of thermodynamics was manifest in the objective function of a non-linear program (NLP). The 

objective of this NLP was to maximize the entropy of a stationary Markov chain subject to certain constraints (such as 

the the constraint that expected energy level is proportional to temperature) [21]. 

The solution of this NLP lead to an expression for the stationary probability distribution (the Boltzmann Distribution) of 

each system state [21]. Thus, the implication of the first principles was the expression of the Boltzmann Distribution. 

What remained was to somehow develop an appropriate mechanism that described how this thermodynamic system 

changes from one state to another while at the same time remaining consistent with the maximization of entropy, i.e., the 

Boltzmann Distribution, as dictated by the fundamental laws of thermodynamics. 

Thus, in addition to this fundamental law, a dynamical framework was necessary to address the problem of how to 

model a system that undergoes some type of change. The well-known mathematical framework of Markov chains and its 

global and detailed balance equations provided those necessary elements that mathematically describe the stochastic nature 

of the system as it changes from one state to another while still obeying the fundamental laws of thermodynamics [20], 

[22], [23]. It was this utilization of the detailed and global balance equations that ultimately lead Metropolis et al. to his 

now famous Metropolis Acceptance Criterion, the main result of Metropolis' contribution. In effect, Metropolis 

'engineered' a transition probability to fit within the framework of global and detailed balance equations given the stationary 
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probability, i.e., the Boltzmann Distribution. Once these transition probabilities were defined, the mathematical description 

of how a large, thermodynamic system evolves from one state to another in a computer simulation was complete [23]. 

Once this method of simulating a thermodynamic system was in place (in 1953), the idea of reducing temperature slowly to 

"anneal", conceived by Kirkpatrick [24] some 30 years later, was the final element that lead to the SA algorithm. This 

algorithm has since been fully mathematically described and analyzed by a host of researchers
3
 (see [20], [22], [23], [24]) 

using various combinatorial optimization problems (COPs) as the, problem framework—a general way of characterizing a 

whole host of discrete optimization problems. Thus, the dynamical and problem frameworks provided the mathematical 

constraints and research focus in a way that was consistent with the laws of thermodynamics. 

3
 Although the algorithm seems to have been fully analyzed, this proposer believes there are still a number of 

fundamental theoretical elements that await discovery. See e.g., Fleischer [25] for a description of scale invariant 

properties of the SA algorithm. These properties illustrate some potentially important symmetries in SA and may play a role 

in research involving a group theoretic approach for modelling SI of SA theory, the first principles were based on 

thermodynamics manifest as the maximization of the entropy in an NLP that lead to the definition of the Boltzmann 

Distribution. The dynamical framework was based on the global and detailed balance equations of Markov chains 

which lead to the Metropolis Acceptance Criterion and the transition probabilities in SA. Finally, the problem framework 

was based on COPs which permitted the application of the ideas onto test bed problems for experimentation and analysis. 

A successful and useful set of formalisms can therefore be modelled on this developmental process
4
 hence ought to involve 

first principles based on fundamental laws, an appropriate dynamical framework, and an appropriate problem framework. 

Each of these three components can be recast to within the context of SI. This is described in more detail in the next 

three sections. 

A. First Principles: The Laws of Evolution 

Any successful theory requires some reasonable and widely accepted assumptions on which the theory is based. Because 

the SI paradigm is based on observations of social insects, i.e., living creatures, the first principles ought to based on, 

involve, or at least be consistent with, the laws of evolution and its implications. Basically, this theory states that species 

evolve over generations constantly improving their fitness to survive through the process of natural selection and genetic 

mutation. Indeed, this theory forms the basis of GAs and its associated theoretical results [27], [26]. But this theoretical 

statement by itself seems insufficient to establish foundational principles for SI. Some reasonable implications of this theory 

are needed. 

One reasonable and important implication of the theory of evolution as it relates to swarms of insects is that it 

selects out those systems that exhibit efficient behavior on many scales. This notion of efficiency is not only reasonable, 

but is also based on observations of social insects and how they adapt to changing environmental conditions (see [26]). 

Indeed, it seems basic that an efficient allocation and use of resources provides a distinct survival value to any species. 

Thus, a reasonable implication of evolution regarding the behavior of social insects is that it lead to behaviors that are, in 

some measure, efficient. These notions of efficiency and adaptability have an important mathematical formalism based on 

the concept of Pareto optimality. 

 

1) Efficiency Via Pareto Optimality: Optimization problems are ubiquitous in the real world and social insects must 

also deal with a variety of them if they are to survive. Certainly, the efficient allocation of resources present problems 

where some goal or objective must be maintained or achieved. Such goals or objectives are often mathematically modelled 

using objective functions, functions of decision variables or parameters that produce a scalar value that must be either 

minimized or maximized. The challenge presented in these often difficult problems is to find the values of those parameters 

that either minimize or maximize, i.e., optimize, the objective function value subject to some constraints on the decision 

variables. 
4
We believe that other theories such as those associated with genetic algorithms (GAs) offer a similar 

developmental model. 

In this perspective, each operating point or vector of decision variables (operational parameters) produces several objec-

tive function values corresponding to a single point in objective function space (this implies a vector of objective function 
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values). A Pareto optimum corresponds to a point in objective function space with the property that when it is compared to 

any other feasible point in objective function space, at least one objective function value (vector component) is superior to 

the corresponding objective function value (vector component) of this other point. Pareto optima therefore constitute a 

special subset of points in objective function space that lie along what is referred to as the Pareto optimal frontier-

the set of points that together dominate (are superior to) all other points in objective function space [29]. See also [30] 

and [31] for descriptions of multi-objective GAs (their intriguing titles notwithstanding do not encompass the ideas put  

forth here on SI). 

 

 
 

Effective methods for determining several Pareto optima can be quite valuable for enhancing the survival value of a species 

(or managing a complex system) because it enables adaptive behavior. This allows the possibility of efficient operations 

when there are changes in the relative utility of the several objectives or when one objective must be restricted to a certain 

range of values. Under such circumstances, the system can be  moved along the Pareto frontier from one Pareto optimum 

to another thereby maintaining operational efficiency. Thus, if in an ant colony a path to a food source becomes congested, 

then other routes must be utilized. Although the distances to food sources are generally minimized as is the level of 

congestion, these often conflicting objectives can be efficiently traded off when the shortest distance is sacrificed to lessen 

the level of congestion [6]. 

To summarize this first component of the foundational principles of SI, the first principles and its implications suggest 

that both subsystems and system should behave in a manner consistent with Pareto optimality. What remains is to 

characterize Pareto optimal behavior in a context reflective of SI. It is noteworthy, and somewhat surprising, that these 

ideas pertaining to Pareto optimality and serf-organization have apparently not been pursued or even articulated by others in 

the context of SI research! See e.g., the very complete books on SI such as [6]. Assuming that natural selection pressures 

have imposed behaviors leading to efficient, adaptable, i.e., Pareto optimal behavior, the question of how this is achieved in 

social insect societies must be addressed. What are the mechanisms that social insects use to solve what amount to MOPs 

with the limited forms of communication they seem to have? 

It may be that notions of scale are involved. Indeed, the concept of stigmergy suggests that what has been regarded as 

collective intelligence or emergent behavior on a large scale is effected by decisions on a smaller scale [6, p. 14]. But 

how is such a relationship among different scales possible when decisions affecting the local environment are based on 

apparently simple information? How can system change be mathematically described in a way consistent with movement 

along the Pareto optimal frontier? More significant however is the notion of efficiently trading off the efficiencies on one scale 

with efficiencies on another scale. Addressing these issues mathematically is the purpose of the dynamical framework 

described below. 

B.  The Dynamical Framework: Promoting Adaptability 

The purpose of the dynamical framework is to provide guidelines for how to mathematically model the dynamics of the 
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system in a way that is consistent with the first principles and faithfully reflects the desired phenomenon. Its articulation 

provides the necessary research and development focus for describing system dynamics. This allows specific questions to be 

asked that lead to specific tests, mathematical constraints, and the like. In essence, it facilitates the engineering of the 

dynamical rules that, in this case, lead to Pareto optimal behavior. It is the essential feature that allows this type of 

research to proceed. 

For SI, the dynamical framework must be based on the two intertwined principle features of SI—its emergent or self-

organized behavior, and the minimal information processing and communications capabilities of the entities involved. 

These two rather vague notions must somehow lead to more well-defined properties and characterizations. The preceding 

section suggests that the emergent behavior can be characterized by Pareto optimal operating points in some decision 

space. The additional requirement that such efficient behavior arises from limited communication and information, in effect, 

imposes some scaling aspects. These are addressed by the Scale Invariant Pareto Optimality (SIPO) concept described 

in the next section. 

 

1) Scale Invariant Pareto Optimality: The SIPO concept stems from a belief that evolution has lead to behaviors of 

social insects that promote the entire species. Somehow over the eons of evolution, insects societies have developed rules 

of conduct that are biologically driven and lead to efficient management of their environment and resources [6, p.30]. Yet, 

given their apparently limited capacity for communication and information processing, it seems rather mysterious that in 

spite of these limitations, their behaviors seem almost guided by an invisible hand
5
 that somehow efficiently manages an 

entire colony's resources! How is this possible? As stated earlier, system movement along the Pareto optimal frontier 

lends itself to adaptable and efficient behavior thereby increasing the survival value of these social insects. The heart of 

the matter in SI therefore becomes: 

How can an entire system be moved along the Pareto optimal frontier when the entities that comprise the system have 

only limited information available to them on which to base their own behaviors and where their behaviors have 

only limited effects on their environment and other entities? 

 

The SIPO concept attempts to answer these types of questions. Simply put, it is a way of characterizing Pareto 

optimal solutions on many scales and thus reflects efficient and adaptable system behaviors on many scales. It provides 

a basis for defining properties of systems that are reasonable and have been observed in social insect colonies. Evolution can 

be seen as imposing not just behaviors that enhance survival of individual entities, but also of groups or societies of these 

entities [6, p.30-1]. Thus, while ants must manage their own survival, they also derive distinct advantages from participating 

in a colony. Indeed, scientists have observed behaviors in ant colonies that in many respects is efficient on several different 

scales involving sub-societies or sub-colonies (see [6, p. 209] for a discussion on nest modularity). There are divisions of 

labor, aspects of specialization and such that contribute to the overall survival value of an entire colony [6, p.2]. This 

interdependency seems to promote their collective, and hence individual, survival. 

Since the SIPO concept revolves around the concept of Pareto optima
6
 it is necessary to fully characterize its mathe-

matical attributes. So far, only its definition has been described. The next few paragraphs describe another important aspect of 

Pareto optima. Their economies like those of humans may indeed be guided by Adam's Smith's invisible hand, i.e., swarm 

intelligence! 
6
It is worth noting that this description of SIPO concepts seems, on the surface, to be similar to those articulated by 

others. Menczer [31] e.g., describes an evolutionary algorithm that seeks to determine Pareto optima and has some scaling 

properties. But this article does not describe the adaptable behavior of entities in terms of movement along a Pareto 

frontier. Coello et al. [30] also provides an intriguing title, but their paper also deals with evolutionary optimization 

schemes for solving MOPs and does not address issues pertaining to SI. 

 

a) The Measure of Pareto Optima: A rather intuitive yet surprisingly little known aspect of Pareto optima is its 

measure. This measure is based on the size of the set of points in objective function space that are dominated by the 

Pareto optimal frontier—in essence a Lebesgue measure or hypervolume. Zitzler [32] was apparently the first to publish 
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this idea in a brief three sentence description.
7
 Fleischer [28] extended this idea and described a set function that maps a 

set of points in objective function space to a scalar value, the Lebesgue measure, and formally proved that this scalar 

achieves its maximum value if and only if its arguments are Pareto optima. Fleischer also defined an efficient (polynomial) 

algorithm for calculating this scalar for an arbitrary number of dimensions (objective functions). 

 

Fig. 2.    The hypervolume of Pareto optima. 

This hypervolume is illustrated by the shaded region in Figure 2 for two minimizing objective functions f1 and f2 

(see [29] for more complicated illustrations in 3 dimensional space). The dotted lines are upper bounds on f1 and f2 while 

the black dots correspond to feasible points in the underlying decision space. Because this set function produces a scalar, 

it can be used as an objective function in an optimization algorithm such as SA. The proof that if this hypervolume is 

maximized then its arguments are Pareto optima
8
 implies that its use in SA can induce it to converge in probability to the 

Pareto optima!
9
 

One important aspect of this measure is that it quantifies efficiency, i.e., changes in the overall efficiency can be mathe-

matically captured by a changes in the scalar hypervolume and depicted by a receding or expanding Pareto optimal frontier 

(see below for a further discussion on efficiency tradeoffs). This measure and its potential roles in SI are described in the 

next sections. 

 

b) Subsystem Interactions and Constraints on Objective Functions: The SIPO property suggests that local 

Efficiency 
7
This idea was independently formulated by the author who later discovered that Zitzler had already described 

it in a brief three sentence passage. The author was therefore compelled to provide a formal proof and some algorithmic 

extensions. 
8
 This direction of proof of the if and only ;/implications is much more difficult, but is necessary in order to 

justify its potential use as an objective function in a metaheuristic such as SA where the mechanism of search is 

crucially dependent on the objective function value, e.g., the Metropolis Acceptance Criterion the goal of which is to 

improve the objective function value. 
9
The author is not aware of any other multi-objective optimization scheme that theoretically converges in probability to 

Pareto optima. May often be sufficient for system-wide efficiency. Articulating and applying this concept to systems of 

entities therefore imposes constraints on how subsystems can interact, using simple forms of information, so that a 

system, be it an ant colony, a swarm of chemical sensors, or a network of computer systems, operates on, or close to, the 

Pareto optimal frontier on both local and global scales. How this can be accomplished is non-trivial because several 

identical subsystems may operate on different Pareto optima in terms of local performance metrics. 

Consider the following simple example where two, identical subsystems have operating points (vectors of parameters or 

decision variables) on one of two local Pareto optima x1 and x2. These two operating points lead to points in objective 

function space p1 = (f(x1),g(x1)) = (f1,g1) and  p2 = (f(x2),g(x2)) = (f2,g2) for two local objective functions f and 

g, where, for purposes here, both are minimized. Let functions F and G be global objective functions each taking two 

arguments, one from each subsystem. Assuming the order of arguments makes no difference in these functions, there 

are three distinct ways in which these two subsystems can operate on local Pareto optima: two ways where both 
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subsystems operate on the same point in local objective function space, i.e., (F(x1,x1),G(x1,x1)) and (F(x2,x2), 

G(x2,x2)) and one way in which the subsystems operate on different local Pareto optima, i.e., (F(x1, x2), G(x1, x2)). 

How should the global objective functions F and G be defined in terms of local objective functions so that all three 

combinations of local Pareto optima map into the set of global Pareto optima? 

 

More generally, under what circumstances do different combinations of local Pareto optima associated with subsystems 

yield a global Pareto optimum? Put another way, what is the form of objective functions that allow mappings of Pareto op-

timal points on the sub-system level, to Pareto optimal points on the system-wide level? This scaling from the sub-system 

level to a system-wide level may therefore impose certain additivity properties or exponential forms in the measures of 

performance and presents separability issues. For example, when must F(x1,x2) = f(x1) + /(x2)? This is another 

example of how the SIPO concept narrows down the playing field and sharpens the questions that need to be asked and 

answered in any development work involving SI concepts. 

Although it is desired that subsystem states be maintained along a local Pareto optimal frontier at the same time system-

wide states are maintained on a global Pareto optimal frontier, the possibility exists that this may not always be possible 

depending upon how these objective functions and their relationships are defined. Afterall, subsystem states affect the 

system-wide objective functions which are also affected by large numbers of other subsystems. Moreover, subsystems 

do not behave independently. The resulting complexity is similar in many ways to the complexity of cellular automata 

(see below). The following section describes how can these constraints can be captured in a mathematically useful way 

that still reflects efficiency. 

 

c) Efficient Tradeoffs of Efficiency Between Scales: Sometimes the benefits to the individual entity must be 

traded 

off for the good of the entire group—e.g., soldiers must often make the ultimate sacrifice to ensure the success of their unit 

(or nation).
10

 This suggests the possibility that certain states of neighboring subsystems maybe 'incompatible'. That is, a 

certain Pareto optimum in one subsystem may preclude a particular Pareto optimum in another (similar to Ising spin 

glass models—see the section below on Markov Random Fields). Thus, it is conceivable that only certain combinations 

of Pareto optima among neighboring subsystems may coexist at any given time. If this is true, it may explain the notion of 

fluctuations as Prigogine calls them [5] and the formation of structures as an attribute of self-organization. 

If such incompatibilities exists between and among neighboring subsystems or between subsystems and system-wide 

Pareto optima, then it must be the case that there is some tradeoff between the efficiency measures of individual subsystems 

and/or the efficiency measure of the entire conglomeration of entities. Some subsystems may have to sacrifice efficiency 

in order for other subsystems to operate Pareto optimally. Recall from the earlier discussion that the measure of Pareto 

optima is a quantification of the efficiency of a system. Thus, a mathematical way of characterizing a tradeoff of 

efficiency between two subsystems or between two scales of systems is to use their respective measures of efficiency to 

define a Pareto optimal frontier based on them. In effect, the scalar hypervolumes associated with Pareto optima on 

different scales themselves become objective functions for a Pareto optimal frontier! To the author's knowledge, this 

type of tradeoff has never been characterized or described in this fashion, hence provides a novel way of characterizing 

subsystem to system interactions. Figure 3 depicts such a tradeoff curve where the Pareto optimal frontier is the bolded 

part of the curve. Note that improvement on one scale comes at the cost of worsening the hypervolume on the other scale. 

Note also the concave form of the curve which is based on the ideas that follow.
11

 

d) Structures and Self-Organized Behavior: The descriptions of self-organized behavior described earlier often entail 

the notions of structures or patterns as the main characterization of self-organization. The foregoing discussion on 

efficient tradeoffs of efficiency measures provides another way of describing how such structures and their precipitating 

fluctuations arise. 

First, some random configuration among the subsystem or entities occurs. Next, the subsystems all seek their local 

Pareto optimum. Finally, in the case where some subsystems cannot attain a Pareto optimum in terms of local objectives 

because of state incompatibilities among neighboring subsystems, these subsystems attempt an efficient tradeoff of efficiency 

measures as described above. These tradeoffs are between an estimate of the measure associated with the global 
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Pareto frontier and an estimate of the measure associated with the local  

10
This type of behavior has also been observed in insect colonies where soldier ants and worker bees sometimes 

sacrifice their lives for the good of the entire colony. See [6, p.36-9]. 
1
' It should be borne in mind that the two axes 

depicted, one for subsystems and the other for the entire system are not independent, but this simple curve captures the 

essential idea of the efficient tradeoffs of efficiency measures. Pareto frontier. Thus, as the subsystems and system 

evolves, neighboring subsystems may evolve in a way guided by these tradeoffs of efficiency measures. Thus, the state 

incompatibilities ultimately give rise to structures as subsystems attempt to operate on their local Pareto optimal 

frontier. The patterns of states are therefore governed by their initial conditions, the various state incompatibilities in 

terms of Pareto optima, and the efficient tradeoffs of efficiency measures in the midst of these subsystem state 

incompatibilities. The patterns or structures observed in insect swarms can therefore possibly be explained in these 

terms. 

e) The 'Graceful' Degradation of Performance: The foregoing discussion also suggests a general and mathemat-

ical way of describing the "graceful degradation" of system performance. Such graceful degradation has been seen as 

an important component in the management of large scale systems such as the Internet [2, Ch.5]. Rather than suffering 

catastrophic changes to a system, it may be possible for system efficiency to be degraded in a more gradual manner. This is 

because system efficiency can be measured using the Lebesgue measure described earlier, hence the measures for different 

scales can be traded off efficiently! This idea of efficient tradeoffs of efficiency measures provides a quantifiable guide of 

how best to achieve this sacrifice of efficiency on one scale for improved efficiency on another scale. These types of issues 

can arise in a variety of contexts. 

 

 
 

Sub-system Efficiency  - ► 

Fig. 3.    A tradeoff curve of different measures of efficiency. 

For instance, during the operation of a complex system it may happen that environmental changes, or changes in system 

state results in a subsystem-system configuration depicted in Figure 3. Here, the x-axis is an estimate of a particular sub-

system's efficiency measure and the y-axis is an estimate of the global efficiency measure. The black dot corresponds to the 

subsystem/system efficiency point under current environmental conditions. These conditions suggest a tradeoff of 

efficiency is possible where the system's efficiency can be improved at a cost of decreasing the subsystem efficiency, 

i.e., the black dot is moved in the direction of the arrow. 

Obviously, if the efficiency measures of enough subsystems are degraded, it becomes increasingly difficult to compensate 

for their degradation. Eventually, the entire system's efficiency measure will be reduced, but the actions of the subsystems in 

establishing their movements along this Pareto optimal frontier of these efficiency measures, provides for the most 

graceful 

degradation of efficiency—because the degradation occurs efficiently! How this occurs poses an interesting and, needless to 

say, difficult problem owing to the many subsystem interactions with the system, i.e., the complexity problem and the fact 

that these efficiency measures are not independent. Without be able to quantify efficiency with this scalar hypervolume, 
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however, it would be impossible to address this problem of graceful degradation in any mathematical way that provides 

some guidance and direction for how to achieve this. This approach of characterizing the subsystem to system efficiency 

tradeoff therefore has many applications to both information networking, understanding the economics and management of 

such systems, as well as economics in general! 

SIPO is a new way of articulating emergent behavior in the context of systems operating under the imperatives of 

natural selection. It provides a way to mathematically characterize properties of systems on many scales and imposes 

constraints on how the subsystems interact and functionally affect global measures of performance. This makes imple-

mentation of efficient systems more realistic, provides some underlying structure from which to investigate mathematical 

forms for objective functions, has the appealing feature of scale invariance and makes sense from an evolutionary point 

of view. But can such properties arise in systems with limited forms of communication and information processing? The 

following section provides a clue, based on recent research, that says it is indeed possible for Pareto optima to at least be 

associated with limitations on the form of information. 

 

2) Limited Signalling Systems and Pareto Optimality: The nexus of operational efficiency and SI seems to stem 

from how the swarms of entities, i.e., sub-systems, communicate and interact with each other and their environment. If 

we are to assume that biological systems have evolved over time to operate efficiently, then the signalling systems used by 

social insects must have some mathematical connection to multi-objective optimization and the concept of Pareto 

optimality. Moreover, such a signalling system must be simple in some sense. The SI paradigm as indicated in the 

literature is based on the use of very simple (and apparently low-cost) signalling methods.  

 

Study of ant colonies for example, shows that entire social systems operate efficiently using simple chemical 

signalling systems based on pheromones. These pheromones constitute a conceptually simple signalling system and provide 

a great deal of useful information, e.g., temporal information since the strength of the pheromone decays over time by the 

process of evaporation ([6, p.43]) in addition to memory of where the ants have been. By interpreting these chemical 

signals and responding to them with simple behaviors, ants perform complex functions efficiently. 

The idea of using a simple signal to convey information that leads to efficient behavior is somewhat remarkable and 

the question therefore arises as to whether a simple signal can even be associated with Pareto optima. The answer to 

this question is of course that it is possible in the sense that an entire set of Pareto optima can be measured using 

a single scalar value, the hypervolume or Lebesgue measure as described earlier (in the paragraph on the measure of Pareto 

optima). Certainly, a single scalar quantity qualifies as perhaps the simplest signal [33]. Thus, a strong connection between 

Pareto optima and simple signals is possible. In effect, this scalar may constitute a mathematical analogue of pheromone! 

This scalar quantity not only provides the foundation for a whole host of heuristic methods that can reveal Pareto optima 

(or near Pareto optima, see [28], [29]
12

), but may also enable the operational movement along a Pareto optimal frontier. 

Pheromone may therefore be nature's way of mapping an entire set of Pareto optimal points to a single scalar quantity 

and suggests mathematical constraints on the form of functions that mimic pheromone. Thus, just as maximizing entropy 

served as a guide in developing Metropolis equations of state [23] that ultimately lead to SA, maximizing this Lebesgue 

measure may serve as a guide in developing appropriate signalling systems to mimic pheromone and how other related 

quantities should change over time or in relation to other quantities. This is the heart and purpose of the dynamical 

framework. 

 

a) Swarm-based Solution Methods: One important con sideration in this discussion on Pareto optima, efficiency 

and 

limited communications is how to tie it all together. How can one effectuate solution methods involving simple signals 

that, 

in effect, solve MOPs? 

One way alluded to earlier is to use the SA algorithm. One of its parallel forms, referred to as cybernetic optimization by 

simulated annealing (COSA), uses scalars that are communicated among processors to modulate the temperature control 

parameter [34], [35]. These scalars provide a feedback control system that improves SAs performance. Like many ants 
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signalling each other with simple signals, parallel processors running COSA communicate using simple signals in a way 

that enhances their collective performance. 

This form of parallel computation as many similarities to other parallel forms such as Tabu Search and so-called 

"random restart local search" methods [27]. These methods all share a number of features in common with how swarms of 

insects solve problems e.g., by exploring many different paths simultaneously (see [6, p.55]). In particular, each processor in 

a parallel system starts at some randomly selected point in decision space and attempts to find the global optimum from 

that point. With many such processors, the chances of finding the global optimum in a reasonable amount of time increases. 

 

b) Transformations and Movement Along the Pareto Optimal Frontier:  An important aspect of multi-objective 

optimization problems is that the vectors of decision variables that produce the Pareto optima can be scattered 

throughout 

the decision space (the domain) in an apparently random or haphazard manner [28], [29]. This is due to the 

interplay 

among the several objective functions—Pareto optima may lie on the sides of hills rather than at their tops or bottoms ( the 

local minima or maxima). Thus, it is very difficult to determine where these decision variable are in the decision space. 

Some 

appropriate method to determine the Pareto optima and their corresponding vectors of decision variables is necessary (see 

[28]). 

12
Note that these results have also detailed efficient algorithms for calculating the scalar associated with this set function 

for any number of objective functions. 

 

It bears emphasis that two Pareto optima that are close to one another in objective function space may have their 

underlying vectors of decision variables quite widely separated and vice versa. Thus, assuming that a gradual change in 

objective function space is desired, such as when there is a gradual change in the relative utility of the different objective 

functions, some method of moving from one vector of decision variables to another such vector some distance away must 

be devised. In other words, once the Pareto optima are identified, some method of transforming one Pareto optimal 

decision vector to another is required. 

One approach for performing such a transformation is through the use of feedforward neural networks [36, Ch.2]. 

Such networks can be trained so that a Pareto optimal decision vector in the input produces the desired Pareto optimal 

decision vector at the output. Of course, a great deal of further research and development in this context is necessary. 

This dynamical framework based on the SIPO concept and its relationships to emergent behavior, efficiency, and simple 

signalling systems (as suggested by the Lebesgue scalar), provide a framework that may enable novel approaches to SI 

research and development in ways consistent with the first principles described earlier. Together, the two main components 

of the SI paradigm, serf-organization as indicated by movement along a Pareto optimal frontier and the minimal signalling 

systems as indicated by the Lebesgue measure for Pareto optima, provide a mathematical foundation from which 

fundamental theories and principles of SI can be developed because they are more precisely defined and characterized than 

the rather ad hoc approaches currently in vogue that attempt to capture some aspect of SI. 

To fully accomplish this potential however, requires some way of applying these ideas to concrete and abstract problems, 

i.e., test bed problems that facilitate the testing, experimentation and ultimately the application of these ideas. The prob-

lems used must have some potential for exhibiting emergent phenomena and at the same time allow for modelling the 

simple forms of interaction, the stigmergy, that is the hallmark of SI. The problem framework, the last of the three formalism 

components, provides these important elements for SI research and development and is described in the next section. 

C.  The Problem Framework 

An important aspect of the problem framework is that it allows specific questions to be asked and problems explored. 

It must be sufficiently general to not only capture the essential elements of the phenomenon, but also offer some avenues on 
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which to implement the dynamical framework. It must also be specific enough to allow useful and appropriate mathematical 

tools to be brought to bear. The problem framework described here attempts to achieve this by describing an abstract 

problem type based on what is termed here as swarming finite state machine (SFSMs) models. 

 

1) Swarming Finite State Machine Models: The idea behind SFSMs is that notwithstanding the limited capabilities 

of swarms of entities, we should nonetheless provide some way of flexibly describing their level of complexity. Afterall, 

human societies present self-organized behavior and certainly forms of 'swarm intelligence'. The allusion to Adam's Smith's 

"unseen hand" ([37]) and Alvin Toffler's social code based on society's propensity for concentration, centralization, special-

ization, standardization, synchronization, and maximization (see [38]) suggest that the central features of SI may be 

ubiquitous. Are these not attributes of very complex forms of swarm intelligence? What is needed then is a way to address 

a continuum of complexity and swarm intelligence. 

SFSMs allow us to do this in that each finite-state machine (FSM) has a finite set of inputs, outputs and internal states that 

provide memory, the potential capacity for learning (where the transitions to states are affected by learning methods-see 

[39]) and certainly the complexity that we hope to manipulate and gain insight about. Moreover, the level of complexity can 

be changed by simply changing the numbers of states that comprise the SFSMs. 

SFSMs form a type of cellular automata that when coupled with appropriate transformation functions and objective 

functions to reflect operation along a Pareto optimal frontier will exhibit the type of serf-organized behavior defined in 

Section II-B. The states of each FSM will have some functional dependence on neighboring FSMs and will be designed to 

stabilize on efficient operating points. This may entail using genetic algorithms (GAs) or involve neural networks to 

search the space of transition functions or train on prescribed operating points so as to induce the FSMs to operate on 

Pareto optimal frontiers. 

These types of simulations provide a real microcosm of the SI world. It can effectively test whether natural selection 

pressures are consonant with efficient operating points in the manner described here. Fitness functions related to the 

efficiency measures could be used to induce the SFSMs to achieve this. It would indeed be interesting to see how these 

SFSMs can then be designed (or evolved) to efficiently handle tradeoffs of efficiency measures, a cornerstone of the SIPO 

concepts described earlier. 

The use of SFSMs allow for abstractions and, ultimately, practical implementations. The level of complexity can be 

controlled in the sense that the size of the FSMs, its number of states, inputs and outputs, can be decided upon a priori. The 

state space of the SFSMs, how its transformation functions are established and how they interact of course require further 

research, but this problem framework and the other two formalisms mentioned earlier provide an important structure on 

which real swarm intelligence can be studied and implemented for real-world problems. 

It is worth pointing out, however, that much of what has been described, the properties and characteristics and such, 

have features in common with many other areas of inquiry in the sciences and engineering. The following areas describe 

some of these features that offer some potentially useful tools and ideas for developing SI systems. 

 

D. Other Scientific/Engineering Tools 

1) Group Theory: The structure of the emergent or self-organized behavior in SI based on the meta-formalism, i.e., 

movement along the Pareto optimal frontier, provides a number of methodologic and analytical advantages for exploring 

the fundamentals of SI. The most significant aspect of this structure is that it may permit the use of group theory in 

developing the fundamental theories of SI. Group theory provides powerful mathematical tools as well as the distinct 

possibility of developing novel insights. 

 
This perspective requires a number of reasonable assumptions and conceptions. A basic conception is that we can model 

each entity i in a swarm as a subsystem that exists in a number of different states xi = (XI1, ..., xin) defined by n parameters 

corresponding to values associated with the local environment as well as the status of the agents themselves. The social 

insects, the ants for example, can be viewed as the agents of change in that they modify the states of these subsystems. 

The states of each subsystem also affect the states and agents of neighboring subsystems, hence is conceptually similar to 
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cellular automata described below. 

The actions of these agents of change can be modelled as transformations on the states of each subsystem. Let x' denote 

the resulting state from the operation of a transformation function Tj. Now % may, in effect, be a function of not just the 

state of entity i, i.e., Xj, but also the states of neighboring subsystems. Thus, TI(XI) = f(.. .XJ_I,XJ,XJ+I ...) where the 

states of neighboring subsystems are explicitly denoted and f is a vector-valued function. Subsequent states, those 

resulting from the action of the agents of change can be related to the current states by 

X -  =  / ( . . . X j _ i , X j , X i + i  . . . )  =  / ( X j )  

for some f £ Pi that is functionally dependent on the states of the neighbors of i. Because of our first and second 

formalisms, these transformations must restrict the output states to the set of Pareto optima P or near Pareto optima 

P', i.e., x' £ S = P U P'. In effect, the neighboring subsystems select transformations from a family Pi of transformations 

all of which map one point in S onto another point in S. Assuming the existence of identity and inverse transformations for 

each such point, the set Pi constitutes a symmetric group ([19]) over the states S. 

 

2) Cellular Automata: Complexity theory, in particular theories regarding cellular automata (CA) share a number 

of features with SI (see [6, p. 245]). CAs are characterized by a set of cells usually arranged in some geometric pattern 

(although this is not technically required) and connected to other similar cells by some neighborhood rule. Each cell has a 

finite number of states which are determined by the states of its immediate neighbors. State transitions are defined by 

simple rules, a central component of cellular automata, that produce complex patterns often described as self-organized 

[36], [3]. The distinctions between SI and CA as proposed here involve the connection between the emergent behavior 

and Pareto optimality. CAs usually do not involve objective functions per se. It is also worth noting that there is a deep 

connection between CA and group theory [3, Ch. 3: Group CA Characterization]. Chaudhuri, et al. [3] provide a number 

of theoretical results on the connection between CA and cyclic groups and other group properties. 

It is also worth noting that the transformation functions that determine how each cell evolves are usually very sim -

ple functions—somewhat analogous to the limited forms of communication associated with SI and stigmergy. But in SI, 

the relationships among the entities is dynamic owing to the mobility of the agents of change. Entity relationships are 

not fixed as in CAs. Notwithstanding this distinction, SFSMs described above can model this mobility in a way consistent 

with a CA paradigm by incorporating system states that model changing environmental conditions. 

 

3) Multi-Objective Optimization: One important aspect in making a connection between self-organization and 

Pareto optima is how these Pareto optima are identified. By creatively utilizing the Lebesgue measure, SA and other euristics 

can be engineered to search for these operating points in a very direct way, by maximizing this Lebesgue measure. This can 

be done using the COSA concept which happens to incorporate simple signalling systems as well. Many useful analogies 

to SI thus become apparent. Swarms of insects are analogous to parallel processors, simple signals in SI are analogous 

to the scalar Lebesgue measure or some estimate of it, maximization of this Lebesgue measure is analogous to movement 

along a Pareto optimal frontier, hence a type of self-organized behavior. This also suggests an interesting, and perhaps 

profound, unity of concepts between and among the various paradigms described here. Game Theory: The dynamics of 

insect colonies involve competition and cooperation among them and so unavoidably involve aspects of game theory. 

The dynamics of competition and cooperation constitute the major components of the more interesting aspects of game 

theory [40]. Game theoretic concepts such as the famous Nash Equilibrium are really statements about Pareto 

optimality and how interacting entities achieve the greatest utility in a changing environment of competition and 

cooperation [41, p.193,339]. 

 

4) Markov Random Fields: The theory of Markov Random Fields (MRFs) shares a great deal in common with that 

of Boltzmann Machines, SA and CA. As alluded to earlier in the paragraphs on Efficient Tradeoffs . . . ) ,  some subsystem 

states may not be allowed to coexist with neighboring subsystem states. MRFs can model this type of behavior and 

have the desirable Markov property in terms of spatial attributes. This provides a mathematical structure to these 

Problems. A large body of useful theoretical results on MRFs exists (se e.g., [42]) and may be quite useful in addressing 
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some of the issues in SI and how efficient tradeoffs of efficiency measures may be analyzed. 

IV. CONCLUSION 

The growth of communications and networked systems imposes on a us a need to explore new and imaginative 

ways to address the expected problems in managing these systems. Effectively utilizing the SI paradigm requires some 

frameworks on which to first build the relevant theory and then guide research toward practical implementations. This article 

examined three aspects of a meta-formalism that attempt to provide this necessary structure to further research into SI and 

develop a more rigorous and mathematically sound theory for its analysis. The three elements of the meta-formalism involve 

1) a set of first principles based on the laws of nature, 2) a dynamical framework, and 3) a problem framework. The 

relevant laws of nature are those associated with the theory of evolution and the effects of natural selection. The theory 

of evolution provides the justification for describing efficient behavior in social insect colonies. This efficient behavior can 

be mathematically characterized and associated with Pareto optima. Thus, the self-organized behavior often associated 

with SI can be given a more mathematical treatment when described in terms of operating points that lie along a Pareto 

optimal frontier. Operation along this frontier also provides a way of mathematically describing adaptive behavior, one of the 

hallmarks of SI. These notions of efficiency and adaptability which are implications of the first principles can be given 

effect as the underlying concepts behind the second formalism component—the dynamical framework. 

The dynamical framework was described in terms of scale invariant Pareto optimality (SIPO), a property that requires that 

the behavior of entities within a swarm must be consistent with efficient behavior and tradeoffs of efficiency on many scales. 

SIPO thus provides a valuable set of conceptual constraints that focusses the research efforts, provides ideas that can be 

mathematically formalized and expressed, and features some of the mathematical elegance of self-similarity so often found 

in natural systems. 

Finally, the problem framework provides a recipe for abstracting the problem and, in effect, provides the modelling clay 

with which to mold SI research so that it is consistent with the first two formalism components. The problem framework 

employs the use of swarming finite state machines models which provide a way to model a continuum of complexity 

apparent in the SI exhibited by different species. 

In conclusion, it is the author's hope that this meta-formalism and the ideas in this article will help facilitate 

research and development using SI. The resulting theories have potential for application in many areas of inquiry involving 

complex systems. The goal of making these increasingly complex systems more efficient, scalable and autonomous will 

help to ensure their effectiveness well into the future. 
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