

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 9, September 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018. 0609019 7818

Gaining Intuition of SSL / TLS Protocol
Version 1.2 for Building Libraries

Aishwarya Radhakrishnan1

BE Student, Department of Information Technology, Mumbai University, Vivekanand Education Society’s Institute Of

Technology, Mumbai, India 1

ABSTRACT: This paper defines TLS protocol that comprises two layers: the TLS record and the TLS
handshake protocols. It also illustrates the messages that go across network when these protocols are implemented.
Transport Layer Security (TLS) – and its predecessor, Secure Sockets Layer (SSL), which is now deprecated
by the Internet Engineering Task Force (IETF) – are cryptographic protocols that provide communications security
 over a computer network.

KEYWORDS: Transport Layer Security (TLS), Secure Sockets Layer (SSL), Advanced Encryption Standard (AES),
Rivest Cipher 4 (RC4), RSA (Rivest-Shamir-Adleman), DSA (digital signature algorithm), MAC (Media Access
Control), SHA-1 (Secure Hash Algorithm 1) , Certificate authority (CA), Request for Comments (RFC), External
Data Representation (XDR), Datum (The singular form of data), Virtual private network (VPN), Voice over Internet
Protocol (voice over IP), Greenwich Mean Time (GMT), Coordinated Universal Time (UTC), Pseudo Random
Function (PRF), Cipher-Block-Chaining(CBC)

I. INTRODUCTION

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL) are both frequently referred to as

"SSL". SSL 1.0 has Internal Netscape design but it got lost in the mists of time. SSL 2.0 was again published by
Netscape in November 1994 was badly broken. SSL 3.0 was designed by Netscape and Paul Kocher in November
1996. TLS 1.0 is Internet standard based on SSL 3.0 developed in January 1999 but TLS 1.0 is not interoperable with
SSL 3.0 as it has same protocol design but different algorithms. TLS 1.0 is deployed in nearly every web browser.

The primary goal of the TLS protocol is to provide privacy and data integrity between two communicating
applications. The protocol is composed of two layers: the TLS Record Protocol and the TLS Handshake Protocol. At
the lowest level, layered on top of some reliable transport protocol (e.g., TCP, is the TLS Record Protocol. The TLS
Record Protocol provides connection security that has two basic properties: One is, the TLS Record Protocol is used
for encapsulation of various higher-level protocols. Other is that the connection is private. Symmetric cryptography is
used for data encryption (e.g., AES, RC4, etc.). The keys for this symmetric encryption are generated uniquely for
each connection and are based on a secret negotiated by another protocol (such as the TLS Handshake Protocol). The
Record Protocol can also be used without encryption. The TLS Handshake Protocol provides connection security that
has three basic properties. First, the peer's identity can be authenticated using asymmetric, or public key, cryptography
(e.g., RSA, DSA, etc.).This authentication can be made optional, but is generally required for at least one of the peers.
Second, the negotiation of a shared secret is secure: the negotiated secret is unavailable to eavesdroppers, and for any
authenticated connection the secret cannot be obtained, even by an attacker who can place himself in the middle of the
connection.Third, the negotiation is reliable: no attacker can modify the negotiation communication without being
detected by the parties to the communication. One advantage of TLS is that it is application protocol independent.
Higher-level protocols can layer on top of the TLS protocol transparently. The TLS standard, however, does not specify
how protocols add security with TLS; the decisions on how to initiate TLS handshaking and how to interpret the
authentication certificates exchanged are left to the judgment of the designers and implementors of protocols that run
on top of TLS.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 9, September 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018. 0609019 7819

II. THE GOAL OF THIS PAPER

This paper describes the two protocol that makes the TLS Protocol and illustrates the messages that go across

network when these protocols are implemented. This document is intended primarily for readers who will be
implementing the protocol and for those doing cryptographic analysis of it. This paper will help you gain a better
intuition of the TLS Protocol but to implement TLS Protocol comprehensively refer RFC 5246.

III. PRESENTATION LANGUAGE

This document deals with the formatting of data in an external representation. The following very basic and somewhat
casually defined presentation syntax will be used. The syntax draws from several sources in its structure. Although it
resembles the programming language "C" in its syntax and XDR in both its syntax and intent, it would be risky to draw
too many parallels.

Vectors

A vector (single-dimensioned array) is a stream of homogeneous data elements. The size of the vector may be
specified at documentation time or left unspecified until runtime. In either case, the length declares the number of
bytes, not the number of elements, in the vector. The syntax for specifying a new type, T', that is a fixed- length vector
of type T is

T T'[n];

Here, T' occupies n bytes in the data stream, where n is a multiple of the size of T. The length of the vector is
not included in the encoded stream. In the following example, Datum is defined to be three consecutive bytes that the
protocol does not interpret, while Data is three consecutive Datum, consuming a total of nine bytes.

opaque Datum[3];/* three uninterpreted bytes */
Datum Data[9]; /* 3 consecutive 3 byte vectors */

Constructed Types

Structure types may be constructed from primitive types for convenience. Each specification declares a new,
unique type. The syntax for definition is much like that of C.

 struct {
 T1 f1;
 T2 f2;
 ...
 Tn fn;
 } [[T]];

Enumerateds

A field of type enum can only assume the values declared in the definition. Only enumerateds of the same
type may be assigned or compared.

 enum { red(3), blue(5), white(7) } Color;

The names of the elements of an enumeration are scoped within the defined type. In this example, a fully
qualified reference to the second element of the enumeration would be Color.blue. Such qualification is not required if
the target of the assignment is wellspecified.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 9, September 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018. 0609019 7820

 Color color = Color.blue; /* overspecified, legal */
 Color color = blue; /* correct, type implicit */

Miscellaneous
Comments begin with "/*" and end with "*/".
The basic numeric data type is an unsigned byte (uint8).

Table

Table used throughout this document are of the following format and used to define each message passed
during TLS Handshake Protocol and TLS Record Protocol and give description about it. This is a generic format and
cells in the table are optional.

Message Name

Meaning of this message

Pseudocode

Description of the pseudocode or message.

IV.THEORETICAL FOUNDATIONS

The Transport Layer Security (TLS) protocol evolved from SSL protocol and SSL is often used to refer to
what is actually TLS. The combination of SSL/TLS is the most widely deployed security protocol used today and is
found in applications such as Web browsers, email and basically any situation where data needs to be securely
exchanged over a network, like file transfers, VPN connections, instant messaging and voice over IP. SSL is designed
to establish encryption and identity assurance. It enables encrypted communication between a web server and a web
browser. SSL ensures that all data passed between the web server and browser remains private and secure.

The TLS Record Protocol provides connection security that has two basic properties:

 1. The connection is private. Symmetric cryptography is used for data encryption (e.g., AES, RC4,etc.). The
keys for this symmetric encryption are generated uniquely for each connection and are based on a secret negotiated by
another protocol (such as the TLS Handshake Protocol). The Record Protocol can also be used without encryption.

 2. The connection is reliable. Message transport includes a message integrity check using a keyed MAC.
Secure hash functions (e.g., SHA-1, etc.) are used for MAC computations. The Record Protocol can operate without a
MAC, but is generally only used in this mode while another protocol is using the Record Protocol as a transport for
negotiating security parameters.
The TLS Handshake Protocol provides connection security that has three basic properties:

 1. The peer's identity can be authenticated using asymmetric, or public key, cryptography (e.g., RSA, DSA,
etc.). This authentication can be made optional, but is generally required for at least one of the peers.

 2. The negotiation of a shared secret is secure: the negotiated secret is unavailable to eavesdroppers, and for
any authenticated connection the secret cannot be obtained, even by an attacker who can place himself in the middle of
the connection.

 3. The negotiation is reliable: no attacker can modify the negotiation communication without being
detected by the parties to the communication.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 9, September 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018. 0609019 7821

TLS Record Protocol is used for encapsulation of various higher-level protocols. One such encapsulated protocol, the
TLS Handshake Protocol, allows the server and client to authenticate each other and to negotiate an encryption
algorithm and cryptographic keys before the application protocol transmits or receives its first byte of data.

V. TLS HANDSHAKE PROTOCOL

The cryptographic parameters of the session state are produced by the TLS Handshake Protocol, which

operates on top of the TLS record layer. When a TLS client and server first start communicating, they agree on a
protocol version, select cryptographic algorithms, optionally authenticate each other, and use public-key encryption
techniques to generate shared secrets.The TLS Handshake Protocol involves the following steps:
 1. Exchange hello messages to agree on algorithms, exchange random values, and check for session resumption.
 2. Exchange the necessary cryptographic parameters to allow the client and server to agree on a premaster secret.
 3. Exchange certificates and cryptographic information to allow the client and server to authenticate themselves.
 4. Generate a master secret from the premaster secret and exchanged random values.
 5. Provide security parameters to the record layer.
 6. Allow the client and server to verify that their peer has calculated the same security parameters and that the
handshake occurred without tampering by an attacker.

The client sends a ClientHello message to which the server must respond with a ServerHello message, or else
a fatal error will occur and the connection will fail. The ClientHello and ServerHello are used to establish security
enhancement capabilities between client and server. The ClientHello and ServerHello establish the following
attributes: Protocol Version, Session ID, Cipher Suite, and Compression Method. Additionally, two random values are
generated and exchanged: ClientHello.random and ServerHello random. The actual key exchange uses up to four
messages: the server Certificate, the ServerKeyExchange, the client Certificate, and the ClientKeyExchange. New key
exchange methods can be created by specifying a format for these messages and by defining the use of the messages to
allow the client and server to agree upon a shared secret. This secret MUST be quite long; currently defined key
exchange methods exchange secrets that range from 46 bytes upwards. Following the hello messages, the server will
send its certificate in a Certificate message if it is to be authenticated. Additionally, a ServerKeyExchange message
may be sent, if it is required (e.g., if the server has no certificate, or if its certificate is for signing only). If the server is
authenticated, it may request a certificate from the client, if that is appropriate to the cipher suite selected. Next, the
server will send the ServerHelloDone message, indicating that the hello-message phase of the handshake is complete.
The server will then wait for a client response. If the server has sent a CertificateRequest message, the client MUST
send the Certificate message. The ClientKeyExchange message is now sent, and the content of that message will
depend on the public key algorithm selected between the ClientHello and the ServerHello. If the client has sent a
certificate with signing ability, a digitally-signed CertificateVerify message is sent to explicitly verify possession of the
private key in the certificate.At this point, a ChangeCipherSpec message is sent by the client, and the client copies the
pending Cipher Spec into the current Cipher Spec.The client then immediately sends the Finished message under the
new algorithms, keys, and secrets. In response, the server will send its own ChangeCipherSpec message, transfer the
pending to the current Cipher Spec, and send its Finished message under the new Cipher Spec. At this point, the
handshake is complete, and the client and server may begin to exchange application layer data. (See flow chart below.)
Application data MUST NOT be sent prior to the completion of the first handshake.

When the client and server decide to resume a previous session or duplicate an existing session (instead of
negotiating new security parameters), the message flow is as follows: The client sends a ClientHello using the Session
ID of the session to be resumed. The server then checks its session cache for a match. If a match is found, and the
server is willing to re-establish the connection under the specified session state, it will send a ServerHello with the
same Session ID value. At this point, both client and server MUST send ChangeCipherSpec messages and proceed
directly to Finished messages. Once the re-establishment is complete, the client and server MAY begin to exchange
application layer data. (See flow chart below.) If a Session ID match is not found, the server generates a new session
ID, and the TLS client and server perform a full handshake.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 9, September 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018. 0609019 7822

Figure 1. Message flow for a full handshake

In figure 1, * Indicates optional or situation-dependent messages that are not always sent.

Following are the description and pseudocode of the messages that are sent by the client and server during TLS
Handshake protocol:

CLIENT HELLO

Meaning of this message: Initiate a new negotiation. It includes a random structure, which is
used later in the protocol.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 9, September 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018. 0609019 7823

Pseudocode:

struct{

 uint32 gmt_unix_time; /* using GMT for
historical reasons, the predecessor of the current worldwide
time base, UTC. */

 SessionID session_id; /* from an earlier or
active connection */

 CipherSuite cipher_suites; /* list or from
previous session */

 CompressionMethod compression_methods;

 select (extensions_present) {
 case false: struct {};
 case true: Extension extensions;
 };

 } ClientHello;

SIGNATURE ALGORITHMS EXTENSION

Meaning of this message:Indicate to the server which signature/hash algorithm pairs may be
used in digital signatures.

Pseudocode:

enum {
 md5(1), sha1(2), sha224(3), sha256(4)
 } HashAlgorithm;
 enum {
 rsa(1), dsa(2)
} SignatureAlgorithm;
 struct {
 HashAlgorithm hash;
 SignatureAlgorithm signature;
} SignatureAndHashAlgorithm;

SignatureAndHashAlgorithm supported_signature_algorithms;

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 9, September 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018. 0609019 7824

Description:
1. Each SignatureAndHashAlgorithm value lists a single hash/signature pair that the

client is willing to verify.
2. The values are indicated in descending order of preference.
3. If the client does not send the signature_algorithms extension, the server uses

preconfigured pairs like {sha1,rsa} , {sha1,dsa} etc.

SERVER HELLO

Meaning of this message:Hellophase messages are used to exchange security enhancement
capabilities

Pseudocode:

struct {
 SessionID session_id;
 CipherSuite cipher_suite;
 CompressionMethod compression_method;
 select (extensions_present) {
 case false: struct {};
 case true: Extension extensions;
 };
} ServerHello;

Description:
The single cipher suite and compression algorithm selected by the server from the list in
ClientHello.cipher_suites and ClientHello.compression_methods

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 9, September 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018. 0609019 7825

SERVER CERTIFICATE

Meaning of this message:Conveys the server's certificate chain to the client.

Pseudocode:

opaque ASN.1Cert;

 struct {
 ASN.1Cert certificate_list;
 } Certificate;

Description:
1. The sender's certificate MUST come first in the list. Each following certificate

MUST directly certify the one preceding it in certificate hierarchy.
2. Certificate type MUST be X.509v3, unless explicitly negotiated.
3. The "trusted_ca_keys" extensions are used to guide certificate selection.
4. If the client provided a "signature_algorithms" extension, then all certificates

provided by the server MUST be signed by a hash/signature algorithm pair that
appears in that extension.

SERVER KEY EXCHANGE

Meaning of this message:Sent by the server only when the server Certificate message does
not contain enough data to allow the client to exchange a Premaster secret: a Diffie-Hellman
public key

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 9, September 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018. 0609019 7826

CERTIFICATE REQUEST

Meaning of this message:A server can optionally request a certificate from the client, if
appropriate for the selected cipher suite

Pseudocode:

enum {
 rsa_sign(1), dsa_sign(2), rsa_ephemeral_dh_RESERVED(5)
} ClientCertificateType;

opaque DistinguishedName;

struct {
 SignatureAndHashAlgorithm supported_signature_algorithms;
 ClientCertificateType certificate_types;
 DistinguishedName certificate_authorities;
} CertificateRequest

SERVER HELLO DONE

Meaning of this message:Upon receipt of the ServerHelloDone message, the client SHOULD
verify that the server provided a valid certificate, if required, and check that the server hello
parameters are acceptable.

Pseudocode:

 struct { } ServerHelloDone;

CLIENT CERTIFICATE

Description:

This message is only sent if the server requests a certificate.

If client doesn't send any certificates or if some aspect of the certificate chain was

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 9, September 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018. 0609019 7827

unacceptable (e.g., it was not signed by a known, trusted CA) the server MAY at its discretion
either continue the handshake without client authentication, or respond with a fatal
handshake_failure alert.

PREMASTER & MASTER SECRET

Description:

Exchange the necessary cryptographic parameters to allow the client and server to agree on a
premaster secret.Generate a master secret from the premaster secret and exchanged random
values

If RSA is used, the client generates a 48-byte master secret, encrypts it using the public key
from the server's certificate, and sends the result in an encrypted Master secret message.

The master secret is expanded into a sequence of secure bytes, which is then split to :

1. client write MAC key
2. server write MAC key
3. client write encryption key
4. server write encryption key

VI. TLS RECORD PROTOCOL

The TLS Record Protocol is a layered protocol. At each layer, messages may include fields for length,

description, and content. The Record Protocol takes messages to be transmitted, fragments the data into manageable
blocks, optionally compresses the data, applies a MAC, encrypts, and transmits the result. Received data is decrypted,
verified, decompressed, reassembled, and then delivered to higher-level clients.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 9, September 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018. 0609019 7828

Figure 2. Message flow during Record Protocol

Key Calculation

 The Record Protocol requires an algorithm to generate keys required by the current connection state
from the security parameters provided by the handshake protocol. The master secret is expanded into a sequence of
secure bytes, which is then split to a client write MAC key, a server write MAC key, a client write encryption key, and
a server write encryption key. Each of these is generated from the byte sequence in that order. Unused values are
empty.The TLS record layer receives uninterpreted data from higher layers in non-empty blocks of arbitrary size.

Master Secret

 A 48-byte secret shared between the two peers in the connection.

Pseudocode defining parameters:

enum { server, client } ConnectionEnd;

enum { tls_prf_sha256 } PRFAlgorithm;

Fragmentation

The record layer fragments information blocks into TLSPlaintext records carrying data in chunks of 2^14
bytes or less. Client message boundaries are not preserved in the record layer (i.e., multiple client messages of the
same ContentTypeMAY be coalesced into a single TLSPlaintext record, or a single message MAY be fragmented
across several records).

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 9, September 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018. 0609019 7829

Pseudocode:

struct {
 uint8 major;
 uint8 minor;
} ProtocolVersion;

enum {
 change_cipher_spec(20), handshake(22),application_data(23)
} ContentType;

struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length;
 opaque fragment[TLSPlaintext.length];
} TLSPlaintext;

Record Compression and Decompression
An algorithm to be used for data compression. This specification must include all information the algorithm

requires to do compression.
The compression algorithm translates a TLSPlaintext structure into a TLSCompressed structure. Compression

must be lossless and may not increase the content length by more than 1024 bytes. If the decompression function
encounters a TLSCompressed.fragment that would decompress to a length in excess of 2^14 bytes, it MUST report a
fatal decompression failure error.

Pseudocode defining these parameters:

enum { null(0), (255) } CompressionMethod;

Pseudocode:
struct {
 ContentType type; /* same as TLSPlaintext.type */
 ProtocolVersion version;/* same as TLSPlaintext.version */
 uint16 length;
 opaque fragment[TLSCompressed.length];
} TLSCompressed;

MAC algorithm

An algorithm to be used for message authentication. This specification includes the size of the value returned
by the MAC algorithm.

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 9, September 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018. 0609019 7830

Pseudocode defining these parameters:

enum {
 null, hmac_md5, hmac_sha1, hmac_sha256, hmac_sha384,
hmac_sha512
} MACAlgorithm;

Pseudocode for MAC generation:

MAC(MAC_write_key, seq_num
 + TLSCompressed.type
 + TLSCompressed.version
 +TLSCompressed.length
 + TLSCompressed.fragment);

 where "+" denotes concatenation.

Bulk encryption algorithm

 An algorithm to be used for bulk encryption. This specification includes the key size of this algorithm,
whether it is a block, stream, or AEAD cipher, the block size of the cipher (if appropriate), and the lengths of explicit
and implicit initialization vectors (or nonces).

Pseudocode defining these parameters:

enum { null, rc4, 3des, aes }BulkCipherAlgorithm;

enum { stream, block, aead } CipherType;

Standard Stream Cipher

Stream ciphers convert TLSCompressed.fragment structures to and from stream TLSCiphertext.fragment
structures. Note that the MAC is computed before encryption. The stream cipher encrypts the entire block, including
the MAC.

Pseudocode:

stream-ciphered struct {
 opaque content[TLSCompressed.length];
 opaque MAC[SecurityParameters.mac_length];
} GenericStreamCipher;

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 9, September 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018. 0609019 7831

CBC Block Cipher
For block ciphers (such as 3DES or AES), the encryption and MAC functions convert

TLSCompressed.fragment structures to and from block TLSCiphertext.fragment structures.

Pseudocode:

block-ciphered struct {

 opaque content[TLSCompressed.length];
 opaque MAC[SecurityParameters.mac_length];
 uint8 padding[GenericBlockCipher.padding_length];
 uint8 padding_length;

 } GenericBlockCipher;

Description:

Padding that is added to force the length of the plaintext to bean integral multiple of the block
cipher's block length.

The algorithms specified in Compression Method, PRF Algorithm, Bulk Cipher Algorithm, and MAC
Algorithm may be added to.

Pseudocode defining security parameters:

struct {

 ConnectionEnd entity;
 PRFAlgorithm prf_algorithm;
 BulkCipherAlgorithm bulk_cipher_algorithm;
CipherType cipher_type;
 uint8 enc_key_length;
 uint8 block_length;
 uint8 mac_algorithm;
uint8 mac_length;
 uint8 mac_key_length;
 CompressionMethod compression_algorithm;
 opaque master_secret[48];

} SecurityParameters;

VII. CONCLUSION

For TLS to be able to provide a secure connection, both the client and server systems, keys, and applications

must be secure. In addition, the implementation must be free of security errors. The system is only as strong as the

http://www.ijircce.com

 ISSN(Online): 2320-9801
 ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(A High Impact Factor, Monthly, Peer Reviewed Journal)

Website: www.ijircce.com
Vol. 6, Issue 9, September 2018

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2018. 0609019 7832

weakest key exchange and authentication algorithm supported, and only trustworthy cryptographic functions should be
used. Short public keys and anonymous servers should be used with great caution. Implementations and users must
be careful when deciding which certificates and certificate authorities are acceptable; a dishonest certificate authority
can do tremendous damage.

REFERENCES

1. Tim Dierks and Eric Rescorla, Request for Comments: 5246 "The TLS Protocol Version 1.2", August 2008
2. TLS/SSL - Stanford CS Theory
3. Jelena Ćurguz, VULNERABILITIES OF THE SSL/TLS PROTOCOL
4. Wikipedia, Transport Layer Security
5. National Institute of Standards and Technology, "Specification for the Advanced Encryption Standard (AES)" FIPS 197. November 26,

2001.
6. National Institute of Standards and Technology, "Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher",

NIST Special Publication 800-67, May 2004.
7. NIST FIPS PUB 186-2, "Digital Signature Standard", National Institute of Standards and Technology, U.S. Department of Commerce,

2000.
8. Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed- Hashing for Message Authentication", RFC 2104, February 1997.
9. Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992.
10. Jonsson, J. and B. Kaliski, "Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1", RFC 3447,

February 2003.
11. Housley, R., Polk, W., Ford, W., and D. Solo, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List

(CRL) Profile", RFC 3280, April 2002.
12. B. Schneier. "Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd ed.", Published by John Wiley & Sons, Inc.

1996.
13. NIST FIPS PUB 180-2, "Secure Hash Standard", National Institute of Standards and Technology, U.S. Department of Commerce, August

2002.
14. Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
15. Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.
16. McGrew, D., "An Interface and Algorithms for Authenticated Encryption", RFC 5116, January 2008.
17. Kent, S., "IP Authentication Header", RFC 4302, December 2005.

http://www.ijircce.com

