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ABSTRACT: With the advancement in geo-positioning technologies and location-based services, it is nowadays 
common for road networks to have textual contents on the vertices. Previous work on finding an optimal route that 
covers a sequence of query keywords has been studied in recent years. However, in many practical scenarios, an 
optimal route might not always be desirable. For example, a personalized route query is issued by providing some clues 
that describe the spatial context between PoI’s along the route, where the output can be far from the optimal one. 
Therefore, in this paper, we investigate the problem of clue-based route search (CRS), which allows a user to provide 
clues on keywords and spatial relationships. First, we propose a greedy algorithm and a dynamic programming 
algorithm as baselines. To improve efficiency, we implement a branch-and-bound algorithm that prunes unnecessary 
vertices in query processing. In order to quickly locate candidate, we propose an AB-tree that stores both the distance 
and keyword information in tree structure. For reducing the index size, we construct a PB-tree by utilizing the virtue of 
2-hop label index to pinpoint the candidate. Extensive experiments are performed and verify the superiority of our 
algorithms and index structures. 

 
KEYWORDS – Spatial keyword queries, clue, Point-of-Interest, travel route search, query processing. 
 

I. INTRODUCTION  
 
With the further development of location-based services and geo positioning technologies, there is a clear trend that an 
increasing amount of geo-textual objects are available in many applications. For example, the location information as 
well as concise textual descriptions of some businesses (e.g., restaurants, hotels) can be easily found in online local 
search services (e.g., yellow pages). To provide great user experience, various keywords related to the spatial query 
models and techniques have emerged such that the geo-textual objects can be efficiently retrieved. It is common to 
search a Point-of-Interest (PoI) by providing exact address or distinguishable keyword in a region which can uniquely 
pinpoint the location. For example, we type the address “73 Mary St, Brisbane” or the name “Kadoya” on Google Maps 
to find a Japanese restaurant in the CBD area. Some existing work [8], [15], [26], [31], [33], [35] extends such query to 
more sophisticated settings, such as retrieving a group of Geo textual objects (usually more than 2) or a trajectory 
covering multiple keywords. However, it is not uncommon that a user aims to find a PoI with less distinguishable 
keyword such as “restaurant”, but she can only provide more or less spatial textual context information around the PoI. 
Liu et al. [25] formalize such context information as clues and use them to identify the most promising PoI’s. Different 
with their work, we target to find a feasible route on road networks by using clues. Particularly, in this paper, we 
investigate a novel query type, namely clue-based route search (CRS), which allows a user to provide clues on textual 
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and spatial context along the route such that a best matching route w.r.t. the clues is returned. More specifically, a CRS 
query is defined over a road network G, and the input of the query consists of a source vertex vq and a sequence of 
clues, where each clue contains a query keyword and a user expected network distance. A vertex contains a clue 
keyword is considered as a match vertex. The query returns a path P in G starting at vq, such that (i.) P passes through a 
sequence of match vertices (PoI’s) w.r.t. the clues and (ii.) the network distances between two contagious matched 
vertices are close to the corresponding user specified distance such that the user’s search intention is satisfied. 
 

II. LITERATURE SURVEY 
 

1. Hierarchical hub labelling’s for shortest paths 
As Abraham, D. Delling stated, we study hierarchical hub labelling’s for computing shortest paths. Our new 

theoretical insights into the structure of hierarchical labels lead to faster pre-processing algorithms, making the 
labelling approach practical for a wider class of graphs. We also find smaller labels for road networks, improving the 
query speed. 
 

2. Fast shortest path distance queries on road networks by pruned highway labelling 
T. Akiba, Y. Iwata stated, we propose a new labeling method for shortest-path and distance queries on road 

networks. We present a new framework (i.e. data structure and query algorithm) referred to as highway-based labeling 
and a preprocessing algorithm for it named pruned highway labeling. Our proposed method has several appealing 
features from different aspects in the literature. Indeed, we take advantages of theoretical analysis of the seminal result 
by Throop for distance oracles, more detailed structures of real road networks, and the pruned labeling algorithm that 
conducts prunedDijkstra's algorithm. The experimental results show that the proposed method is comparable to the 
previous state-of-the-art labeling method in both query time and in data size, while our main improvement is that the 
preprocessing time is much faster. 
 

3. Dynamic and historical shortest path distance queries on large evolving networks by pruned landmark 
labelling 

As T. Akiba, Y. Iwata stated, we propose two dynamic indexing schemes for shortest-path and distance queries on 
large time-evolving graphs, which are useful in a wide range of important applications such as real-time network-aware 
search and network evolution analysis. To the best of our knowledge, these methods are the first practical exact 
indexing methods to efficiently process distance queries and dynamic graph updates. We first propose a dynamic 
indexing scheme for queries on the last snapshot. The scalability and efficiency of its offline indexing algorithm and 
query algorithm are competitive even with previous static methods. Meanwhile, the method is dynamic, that is, it can 
incrementally update indices as the graph changes over time. Then, we further design another dynamic indexing 
scheme that can also answer two kinds of historical queries with regard to not only the latest snapshot but also previous 
snapshots. Through extensive experiments on real and synthetic evolving networks, we show the scalability and 
efficiency of our methods. Specifically, they can construct indices from large graphs with millions of vertices, answer 
queries in microseconds, and update indices in milliseconds. 
 

4.  Collective spatial keyword querying 
X. Cao, G. Cong, with the proliferation of geo-positioning and geo-tagging, spatial web objects that possess both a 

geographical location and a textual description are gaining in prevalence, and spatial keyword queries that exploit both 
location and textual description are gaining in prominence. However, the queries studied so far generally focus on 
finding individual objects that each satisfies a query rather than finding groups of objects where the objects in a group 
collectively satisfy a query. We define the problem of retrieving a group of spatial web objects such that the group's 
keywords cover the query's keywords and such that objects are nearest to the query location and have the lowest inter-
object distances. Specifically, we study two variants of this problem, both of which are NP-complete. We devise exact 
solutions as well as approximate solutions with provable approximation bounds to the problems. We present empirical 
studies that offer insight into the efficiency and accuracy of the solutions. 
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5.  The multi-rule partial sequenced route query 
H. Chen, W.-S. Ku, about trip planning search (TPS) represents an important class of queries in Geographic 

Information Systems (GIS). In many real-world applications, TPS requests are issued with a number of constraints. 
Unfortunately, most of these constrained TPS cannot be directly answered by any of the existing algorithms. By 
formulating each restriction into rules, we propose a novel form of route query, namely the multi-rule partial sequenced 
route (MRPSR) query. Our work provides a unified framework that also subsumes the well-known trip planning query 
(TPQ) and the optimal sequenced route (OSR) query. In this paper, we first prove that MRPSR is NP-hard and then 
present three heuristic algorithms to search for near-optimal solutions for the MRPSR query. Our extensive simulations 
show that all of the proposed algorithms can answer the MRPSR query effectively and efficiently. Using both real and 
synthetic datasets, we investigate the performance of our algorithms with the metrics of the route distance and the 
response time in terms of the percentage of the constrained points of interest (POI) categories. Compared to the LORD-
based brute-force solution, the response times of our algorithms are remarkably reduced while the resulting route length 
is only slightly longer than the shortest route. 
 

III. RELATED WORK 
 

A. Top-k Spatial Keyword Search 
Searching geo-textual objects with query location and keywords has gained increasing attention recently due 

to the popularity of location-based services. In Euclidean space, IR2-tree [13] integrates signature files and R-tree to 
answer Boolean keyword queries. IR-tree [12] is an R-tree augmented with inverted files that supports the ranking of 
objects based on a score function of spatial distance and text relevancy. Cao et al. [7] proposes a location-aware top-k 
prestige-based text retrieval (LkPT) query, to retrieve the top-k spatial web objects ranked according to both prestige-
based text relevance (PR) and location proximity. [10] Provides an all-round survey of 12 state-of-art geo-textual 
indices and proposes a benchmark that enables the comparison of the spatial keyword query performance. Zhang et al. 
[31], [32] proposes the m closet keyword query (mCK query) which aims to find the closest objects that match the 
query keywords and their distance diameter is minimized. Studies the problem of direction aware spatial keyword 
search, which aims at finding the k nearest neighbours to the query that contain all input keywords and satisfy the 
direction constraint. Rocha et al. [27] address the problem of processing top-k spatial keyword queries on road 
networks where the distance between the query location and the spatial object is the length of shortest path. ROAD [21] 
organizes the road network as a hierarchy of sub-graphs, and connects them by adding shortcuts. For each sub graph, an 
object abstract is generated for keyword checking. By using network expansion, the sub graphs without intended object 
are pruned out. G-tree [36] adopts a graph partitioning approach to form a hierarchy. 
 
B. Travel Route Search 

The travel route search problem has been substantially studied for decades. Traveling Salesman Problem (TSP) [11] 
is the most classic problem in route planning. TSP aims to find the round trip that has the minimum cost from a source 
point to a set of targets. Li et al. [22] study the problem of Trip Planning Query (TPQ) in spatial databases, where each 
object is associated with a location and a category. With a starting point S, a destination E and a set of categories C, 
TPQ retrieves the best trip that starts at S passes through at least one point from each category, and ends at E. TPQ can 
be considered as a generalization of Travelling Salesman Problem (TSP), thus two approximation algorithms are 
proposed. [28] Studies the problem of optimal sequenced route (OSR), which aims to find a route of minimum length 
starting from a source point and passing through a number of typed locations in a specific sequence imposed on the 
types of the locations. They propose a LORD and R-LORD algorithms to filter out the locations that cannot be in the 
optimal route, thus improves the sequence route (MRPSR), which aims to find an optimal route with minimum distance 
under some partial category order rules defined in the query. They propose three heuristic algorithms to search for near-
optimal solutions for the MRPSR query. [20] proposes a greedy algorithm to find a route whose length is smaller than a 
specified threshold while the total text relevance of this route is maximized. 
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IV. PROBLEM DEFINITION 
 
Definition 1 (Clue).  A clue is defined as µ(w, d, s), where w  is a query keyword, d is a user defined distance, and s [0, 
1] is a confidence factor. 
Definition 2 (Match). Given a source  vertex  u  and  a  clue  µ(w, d, s), we say that the vertex pair σ(u  v) is a match 
w.r.t. clue µ, if the vertex v contains clue keyword w and the network distance between u and v is in [d(1 − s), d(1 + s)], 
i.e., w ∈ Φ(v) and dG(u, v) ∈ [d(1 − s), d(1 + s)].. 

We adopt the idea of distance oracle to calculate the network distance between two input vertices. Given a source-
target pairof vertices, returns the shortest network distance between them. As we know, the algorithms and data 
structures on have been extensively studied by existing works, which can be roughly summarized into two categories, 
expansion-based methods and lookup-based methods. The most famous expansion-based method for    is Dijkstra’s 
algorithm [14], which, given a s-t pair in     road network tt, traverses the vertices in tt from s to t. However, the 
problem of using Dijkstra’s algorithm is that it must visit every vertex that is closer to s, and the number of such 
unneeded. 
 
1 GREEDY CLUE SEARCHALGORITHM 
 
We develop a greedy algorithm as a baseline for answering the CRS query, which is called Greedy Clue Search (GCS) 
algorithm. Given a query Q = (vq; C), we first add vq into a candidate path. Then we use the Procedure findNextMin() 
to determine the next match vertex v1 that the matching distance between _1 and _1(vq ! v1), i.e., dm(_1; _1), is 
reduced. Afterwards, we insert v1 into the candidate path, and continue to find its contagious candidate by 
findNextMin(). This process is repeated until all the match vertices are firm, thus the candidate path forms a feasible 
path, denoted as FPvq If we assume Procedure findNextMin() costs time f, then the time complexity of GCS is O(k _ 
f).  
 
2 CLUE-BASED DYNAMIC PROGRAMMING ALGORITHM 
 
As we know, even though GCS has a short response time, the accuracy of the answer cannot be guaranteed. To achieve 
better accuracy, we propose an exact algorithm, called Clue-based Dynamic Programming (CDP), to answer the CRS 
query. Generally, it is challenging to develop an efficient exact algorithm for CRS queries, since we cannot avoid 
thorough search for PoIs in road networks. For instance, the number of vertices that contain keyword wi 2 C is denoted 
as jVwi j, thus the time complexity of the brute-force approach, which attempts all possible combinations, is 
O(Qwi2CjVwi j). 
 
Algorithm 1: Procedure findNextMin() 
 
Input: Source vertex u and clue µ (w; d; ϵ) 
Output: min { dm(µ;σ ) } and match vertex v 
 
1      From u, do network traversal; 
2      if a match vertex v is found then 
3      dG the network distance between u and v; 
4  while true do 
5         Find next v’  contains w, thus obtain d’G; 
6  ifdG< d and d’G> d then 
7               break; 
8  else 
9                              v v’  anddGd’G; 
10     return min { dm (µ; σ ) } and v; 
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In CDP, we construct a keyword posting list for each keyword w, which is a list of vertices that contain w. 
When a CRS query is issued, we sort the posting lists according to the keyword order of wi 2 C. Note that the order of 
the vertices within each posting list does not matter and can be random, hence are sorted by vertex id for simplicity. It 
is easy to see that these posting lists actually construct a k-bipartite graph G0, which in fact shows all feasible paths for 
a given C. The weight of each edge in G0 is computed as the matching distance. Specifically, for each u 2 Vwi ,we 
define D(wi; u) to denote the minimum identical distance one can achieve with a walk that passes the keywords from 
w1 to wi consistent with the order in C and stops at u. In other words, the weight of vertex u 2 G0 is computed by 
D(wi; u), which is the minimum matching distance of all partial feasible paths end at u. 
Then we compute D(wi; u) by the following recursive formula: 
(i) i = 1: for match vertices u 2 Vw1 , we have 

D(wi, u) = dm ( µi(wi, di), σ (vq --> u)) 
(ii) i> 1: for match vertices v ϵ Vwi-1 and  u ϵ Vwi , we have 
D(wi; u) = min v ϵ Vwi-1{ max {D(wi-1; v), dm(µi, σ (vu))}} 
 
Algorithm 2: Clue-based Dynamic Programming CDP 
Input: Q = (vq, C = { (w1; d1); ……...,(wk, dk) }) 
Output:FPcdp with dm(C,FPcdp) 
 
1         for each u ϵ Vw1 do 
2  Initial D(w1, u); 
3         for 1 < i <= k do 
4  foreach u ϵVwi,do 
5  Initial intermediate vector iv(u); 
6  for each v ϵVwi-1 do 
7          if dm(µ I,σ (v  u)) < D(wi-1, v) then 
8   iv(u) insert D(wi-1, v); 
9  else 
10   iv(u) insert dm(µ i,σ (vu)); 
11  D(wi, u) min { iv(u) } 
12 Find min { D(wk, u) }; 
13 returnFPcdp and dm(C,FPcdp) min { D(wk, u) } 
 
3 BRANCH AND BOUND ALGORITHM 

 
Although CDP provides an exact solution, the search efficiency cannot be maintained. For instance, consider 

the worst case, we assume that all vertices contain query keywords, then the time is O(k _ jV j2). To propose a more 
efficient algorithm, we assume there is an artificial directed graph G0, which is similar to the k-bipartite graph in CDP 
that formed by all candidate vertices containing keywords in C, where the edge of G0 is a match of one clue and in the 
meantime its direction complies the keyword order of the clue. Note that, G0 is organized into k levels, and each level i 
corresponds to each keyword wi. Based on G0, we develop a Branch-and-Bound (BAB) algorithm to search G0 in a 
depth-first manner by applying the filter-and-refine paradigm, which only visits a small portion of vertices in G0. 
Fortunately, we can use the result of GCS to speed up the search process since it can serve as an initial upper bound.  
 
3.1 Algorithm Outline 
 

We start the searching from level 1 to k to obtain a feasible path FP, if the matching distance dm(C;FP) is 
greater than the current upper bound, we continue to search for the next candidate feasible path, otherwise we update the 
upper bound. It is worth noting that it is not necessary to go through every candidate feasible path. If the matching 
distance at intermediate level already exceeds the upper bound, it can be removed. This process terminates when the 
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matching distance next to be processed at level 1 can be filtered, since it is impossible to find a feasible path with smaller 
match distance. 
 
Candidate feasible path updating. 

 
 Initially, we keep a stack to store the partial candidate path, which contains a sequence of vertices and 

corresponding matching distances. First, we fetch vq into the stack, then we continue to find next candidate at level 1. 
Basically, the key component of this algorithm is to quickly locate the next best match vertex, and the details of 
Procedure findNext() will be introduced later. Given a partial candidate path FP(vq; v1; : : : ; vi) obtained at level i, we 
apply findNext() to find the next candidate vi+1 at level i+1. Once vi+1 is found, we compute di+1m (vi+1) which 
denotes the matching distance at level i + 1 resulted by vi+1, and compare it with current UB. Note that, vi+1 is accepted 
as a candidate and inserted into the stack if and only if its matching distance di+1 m (vi+1) is smaller than UB. 
Otherwise, vi is removed from the stack as well as di m(vi). In other words, vi is not valid that the path FP(vq; v1; : : : ; 
vi 1) cannot survive by passing vi, then we have to find an alternative v0 . As we know vi is the current best candidate 
at level i, therefore we have to relax the matching distance by finding v0i where dim(vi) _ di m(v0i) and dim(v0i) is less 
among all the rest vertices untouched at level i. Afterwards, if v0 I is valid, we continue to apply findNext() on it.Upper 
bound updating. Specifically, after we obtain a feasible path FP(vq; v1; : : : ; vk 1) at level k  1, if vk is returnedby 
findNext(), then we check if dk m(vk) exceeds UB. If vk is not valid, we prune vk and simply repeat the above process. 
 
Algorithm 3: Branch and Bound BAB 
 
Input: Q = (vq; C) 
Output:FPbab with dm(C;FPbab) 
1 Initialize stackV, stackD, and search threshold _; 
2 Push vq into stackV; 
3  while stackV is not empty do 
4  i   stackV.size(); 
5  iffindNext(vi 1; di;wi; _) = true then 
6   Obtain vi and dim(vi); 
7   Ø0:0; 
8   Push vi into stackV and dim(vi) into stackD; 
9   if i equals to k then 
10   max{stackDg}<= UB then 
11    Update UB by maxfstackDg; 
12    Update FPbab by stackV; 
13   Update _ by top of stackD; 
14   Update stackV and StackD; 
15  else 
16  Update _ by top of stackD; 
17  Update stackV and StackD; 
18 returnFPbab and dm(C;FPbab)   UB; 
 

V. CONCLUSION AND FUTURE DIRECTIONS 
 
In this paper, we study the problem of CRS on road networks, which aims to find an optimal route such that it 

covers a set of query keywords in a given specific order, and the matching distance is minimized. To answer the CRS 
query, we first propose a greedy clue-based algorithm GCS with no index where the network expansion approach is 
adapted to greedily select the current best candidates to build feasible paths. Then, we devise an exact algorithm, 
namely clue-based dynamic programming CDP, to answer the query that enumerates all feasible paths and finally 
returns the optimal result. To further reduce the computational overhead, we propose a branch-and-bound algorithm 
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BAB by applying filter-and-refine paradigm such that only a small portion of vertices are visited, thus improves the 
search efficiency. In order to quickly locate the candidate vertices, we develop AB-tree and PB-tree structures to speed 
up the tree traversal, as well as a semi active index updating mechanism. Results of empirical studies show that all the 
proposed algorithms are capable of answering CRS query efficiently, while the BAB algorithm runs much faster, and 
the index size of PB-tree is much smaller than AB-tree. Several directions for future research are promising. First, users 
may prefer a more generic preference model, which combines PoI rating, PoI average menu price, etc, in the query 
clue. Second, it is of interest to take temporal information into account and further extend the CRS query. Each PoI is 
assigned with an opening hours’ time interval [To; Tc], and each clue contains a visiting time t, where the resulting 
query aims to find a path such that the time interval of each matched PoI covers the visiting time. Third, requiring users 
to provide exact keyword match is difficult sometimes as they are just providing “clue”, which may be imprecise in 
nature. Thus, it is of interest to extend our model distance can be modified by incorporating both spatial distance and 
textual distance together through a linear combination. 
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