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ABSTRACT: Spectrum sensing is the core and key task upon which the entire operation of Cognitive Radio rests. In 
this paper, we propose a spectrum sensing technique based on the estimates of the spectrum of a multiband signal 
obtained from its non-uniform compressed multicoset sampler operating at the sub-Nyquist rate. We show that our 
proposed spectrum sensing method provides accurate results using very fewer amount of data samples. We discuss in 
detail the effect of false detections based on the quality of the reconstructed signal obtained from non-uniform 
multicoset samples. 
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I. INTRODUCTION 
 
The available electromagnetic radio spectrum is a precious resource, but it is not utilized efficiently because at a 

particular geographical location and time only a fraction of the entire spectrum is used. This effect combined with  the 
current static licensing approach of the spectrum gives rise to unused spectrum white spaces or spectrum holes. 
Cognitive Radio (CR), is a new way of looking at wireless communications, has the potential to become the solution 
to the spectrum underutilization problem, by permitting unlicensed users to utilize these spectrum holes [1]. The key 
task of CR is Spectrum sensing, defined as detecting the presence or absence of a signal by observing the radio 
spectrum. Some available traditional spectrum sensing techniques are energy detection, matched filter and 
cyclostationary feature detection that have been proposed for narrow band sensing [2]. All these techniques filter the 
received signal with narrowband band-pass filters and then sample it uniformly at the Nyquist rate and then process 
the signal. In these approaches to spectrum sensing, the detection method is based on binary hypothesis-testing 
problem i.e. to detect the presence (H1) or absence (H0) of a primary user in the considered band. 

With the advances in wireless communications, future cognitive radios should be capable of scanning a wideband 
of frequencies, over a few GHz. The usual sampling of a wideband signal needs high sampling rate ADCs, which are 
required to operate at or above the Nyquist rate. The spectrum sensing techniques mentioned above have their 
respective advantages and disadvantages. However, a common drawback is that they operate at Nyquist sampling rate. 
A major challenge is the development of efficient techniques to process the wideband signal sampled at  Nyquist rate 
in real-time.To overcome this problem, compressive sensing based solutions have been proposed in [3], [4] and [5]. In 
[3], authors proposed method based on Analog to Information converter. From the compressed samples of the signal, 
the spectrum can be estimated by solving an optimization problem.  

In this paper, based on the sparsity of wideband signals in the frequency domain and usingnon-uniform sub-
Nyquist Multicoset sampling of the input signal, we propose a wideband spectrum sensing method for the detection of 
active bands which reduces the average sampling rate. At low SNR values, the performance of the proposed method is 
examined with fewer data samples and is found to produce accurate results. The impact of the false detections of the 
proposed sensing method is analyzed using the reconstructed signal in time domain. The remainder of the paper is 
organized as follows. Section II details signal model and problem statement. Section III, provides an overview of 
multicoset sapling. The proposed non-uniform spectrum sensing method is presented in Section IV. Numerical results 
are presented in Section V followed by the empirical evaluation of threshold in Section VI. The impact of the 
proposed method on the multicoset sampler is discussed in Section VII followed by conclusion in Section VIII. 
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II. SIGNAL MODEL AND PROBLEM STATEMENT 
 
Let x(t) be a real valued, finite-energy, continuous-time signal and let 푥(푓) = ∫ 푥(푡)푒∞

∞   be its fourier 
transformation. We treat a multiband signal model M in which x(t) is band limited to Β=[−퐹 /2,퐹 /2] 

  
 
 
 
 

 
 
 
 
 

Fig.1: Division of the observation band into L=20 cells where 푘 = {푘 }  are the indexes of active cell. 
 

F is the spectral support of the signal x(t) such that F ⊂ 퐵 and consists of at most 푁  frequency intervals (bands) 
whose width is b. 

Multicoset sampling starts by dividing the entire frequency band into L narrowband cells, each of them with 
bandwidth b, such that 퐹 = 퐿 × 푏	[6] − [7]. These cells are indexed from 0 to L-1 ,see Figure 1. Active cells are the 
spectral cells which contain part of signal spectrum. The indexes of active cells are collected into a set K called the 
active cells set where 푘 = {푘 } .Note that 푞 = |퐾|, where | ∗ | is the cardinality operator. For the particular band 
shown in the figure1, the set of active cells indexes is 푘 = {푘 ,푘 , … . 푘 } = {1,2,4,5,8,9,10,11,14,15,17,18} with 
q=12 and NB=6. To recover Nyquist rate samples of the received signal from sub-nyquist Multicoset samples. 

The Knowledge of the number of bands 푁  and K is paramount importance [6] since they are required to reconstruct 
the time domain signal but are unknown to the system. Therefore, based on this discussion our problem is: Given the 
observation band, Β=[−퐹 /2,퐹 /2], the objective is to detect correctly the active cells set k for optimal 
reconstruction of the non-uniformly sub-nyquist sampled signal x(t) and to analyze the impact of the false detection of 
K on the average rate of the system 

 
III. MULTICOSET SAMPLER 

 

Fig.2:Multicoset sampler for wideband signal along with proposed Non-uniform spectrum sensing method shown within the dotted lines block 
    

The multicoset sampler samples the incoming analog signal at a rate lower than the Nyquist sampling frequency. Using 
these samples the non-uniform sensing block performs spectrum detection and computes the parameters 푁퐵 and훫, 
which required for reconstruction of the signal in the reconstruction block. 
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Fig.3: L uniformly spaced Nyquist samples and corresponding p mulitcoset samples. 
 
In this paper, our objective is to study the performance of the proposed non-uniform sensing method. Therefore, we 

give an overview of the multicoset sampling scheme. Multicoset sampling is a periodic non-uniform sampling 
technique which samples the input signal x(t) at a rate lower than the Nyquist rate, thereby capturing only the amount 
of information required for an accurate reconstruction of the signal based on the Landau lower bound [8].   

Multicoset sampling starts by choosing an appropriate sampling period푇, which is less than or equal to the Nyquist 
period of x(t). Then the input signal (푡) is non-uniformly sampled at 
푡 (푛) = (푛퐿 + 푐 )푇, where 1≤푖≤푝and 푛∈ℤ [9]. The sampling pattern is the set ∁= {푐푖} which contains p distinct, unique 
integers from 0 to L-1 chosen to minimize the condition number [5]. The parameters L and p are selected such that L≥ 
p> 0.   

Multicoset sampling can be viewed as first sampling the input signal at a uniform rate with period T and then 
selecting only p non-uniform samples from L uniform samples (see Figure 3)The process is repeated for consecutive 
segments each having L uniform samples such a way that the sampling period of the p selected samples is L.   

The set C specifies the p samples such that 0≤푐1 ≤푐2 ≤⋯≤퐿−1. Multicoset sampler can be implemented using p ADCs 
working in parallel [10]. Each ADC operates uniformly at a period푇 = 퐿푇. The multicoset sampler, provides p data 
sequences for i = 1… p, given by   
                                                                  푥 = 푥(푛퐿 +)푇 = (푛 + )푇                                                                          (1) 

where 1≤푖 ≤푝. Therefore, the average sampling rate of the multicoset sampler is 퐹푎푣g=훼퐹푁푦푞, where α	=  To recover 
the signal x(t) sampled at the sub-Nyquist rate, 푁퐵 and k must be known to the reconstruction block [6].  

 
IV. PROPOSED NON-UNIFORM SPECTRUM SENSING MODEL 

 
In this section, we discuss our proposed Non-Uniform Spectrum Sensing Block (NUSS) (shown in dotted block in 

Figure 2) to compute the parameters   and  which can allow successful reconstruction ofx(푡). The function of each 
sub-block is explained in the subsections to follow,   

 
A. NON-UNIFORM SPECTRUM ESTIMATION BLOCK: 

As Stated in Section II, our objective is to detect the total number of bands 푁퐵 and the set of active cells훫. Since the 
input signal(푡) is under sampled and the samples are unevenly spaced, the usual spectrum sensing techniques like FFT 
based energy detection and cyclostationary based detection cannot be used [2]. To overcome this hurdle, we treat this 
scenario as a missing data problem and in this paper we propose to use the Lomb-Scargle method [11] to estimate the 
power spectral density (PSD) of the non-uniformly sampled signal. In the remaining sub-blocks of the sensing model, 
푁퐵 and  are computed from this estimated PSD. The Lomb-Scargleperiodogram is a popular tool to detect if an 
unevenly spaced data is due to noise or it also contains the contribution of a signal by providing an estimate of the PSD. 

 Lomb-Scargle method [12] evaluates the samples, only at times tn that are actually measured. Suppose that there are 
Ns samples x(tn), n = 1, ...,Ns. The PSD estimate obtained from Lomb-Scargle method is defined by (1) (spectral power 
as a function of angular frequency 휔 = 2πf > 0 with f ⊂ B = [  , ]. 
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훾 = 훾(휔) =
1

2휎
[∑ (푥 − 푥 ) cos휔(푡 − 훿)]

∑ cos 휔(푡 − 훿)  

+
1

2휎
[∑ (푥 − 푥 ) sin휔(푡 − 훿)]

∑ sin 휔(푡 − 훿)  

 
 

(2) 

Where 푥 and 휎  represent the mean and variance of the samples. 
 
B. MOVING AVERAGE FILTER BLOCK: 

It is observed that the PSD estimate 훾 obtained from the Lomb-Scargle method has a high variance. As a result of 
which NB and K are not easy to detect if the PSD estimates are used in their original form. Therefore, we usea moving 
average filter to smoothen the 훾 obtained from the non- uniform sampled data. The moving average filter smoothes the 
incoming 훾 by replacing each data point with the average of the neighboring data points defined within a specified 
span. This process is equivalent to low pass filtering with the response of the smoothing given by the difference 
equation.  

Fig.4: Support detection using threshold in non-uniform spectrum sensing block. 

훾 (푓) =
1

2푀 + 1
(훾(푓 +푀) + 훾(푓 +푀 − 1) +⋯+ 훾(푓 −푀)) (3) 

Where 훾 (푓) is the smoothed value for the PSD at the frequency푓, 푀 is the number of neighboring data points on either 
side of 훾 (푓), and 2M+1 is the span. 
 
C. DESCRIPTION OF THE  PROPOSED ALGORITHM: 

     Once a smooth PSD estimate has been obtained, the spectral support F is computed with reference to a threshold 
value, η which is selected as a function of maximum PSD value 훾  i.e, 

Ϝ = [푎 ,푏 ] (5) 

Where 푎  and 푏  represent the crossing points a the threshold 휂. Once the support F is found, the set K, can be 
calculated using (6) as follows 

⌊푎 퐿푇⌋ 	≤ 	{푘 	} 	≤ ⌊푏 퐿푇⌋ (6) 

Where 1	 ≤ 푖	 ≤ 푁  and	푇 = . When all the 	푘 	sets are calculated for each band, the set of spectral indexes K is 

computed as   

퐾 = [	푘 	] = {푘 }  (7) 

The set K then is sent to the reconstruction stage to recover 푥(t), as shown in figure 2. 
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V. PERFOMANCE OF THE PROPOSED NON-UNIFORM DETECTOR 
 
In this section, we present some numerical results for our proposed non-uniform spectrum sensing block. For 

simulations, The wideband of interest is in the range of B=[-300,300] MHz, therefore the Nyquist sampling rate is 
푓 =600 MHz. A multiband signal with NB=6 bands, each with a maximum bandwidth of 10MHz. The input signal is 
sparse in frequency domain. For simplicity all the NB bands are assumed to have the sample amplitude. 16 QAM 
modulation symbols are used that are corrupted by additive Gaussian noise.Given 퐹 = 300푀퐻푧, it is desired to 
detect 푁  and K for the input signal which is sampled at a sub-Nyquist rate using the multicoset sampler. For the NUSS 
block β is set equal to -3.5 dB. The performance of proposed system is evaluated by computing the probability of 
correctly detecting the occupancy of signal and probability of false alarm in terms of  푁  and k as follows 

 
푃 ( ) = Pr 푁 = 푁  
푃 ( ) = Pr 퐾 = 퐾  

(8) 

푃 ( ) = Pr 푁 > 푁  
푃 ( ) = Pr 퐾 > |퐾| 퐾 ⊂ |퐾|  

(9) 
 
 

Equation 9 gives the probability of false alarm (푃 ) where |퐾| represents the cardinality of k. the subscripts 푁  and 
K are used to distinguish the probabilities of bands and active cell set, respectively. We present both the  푃 ( ) and 
푃 ( ) as the correct detection probability of active cells and the probability of correct detection of 푁  see equations 
(8) and (9). We have performed 1000 iterations at various values of α to compute 푃 	and 푃 . Results in Figure (5-8) 
are plotted explicitly to show the performance of the NUSS block. Furthermore the results are compared with the 
energy detector. The results of energy detector are plotted for 푃 =0.01 [13].  

In Figure 5, 푃 ( ) and 푃 ( ) are plotted against varying SNR for α= 0.4, 0.5, 0.6. It is observed that for α= 0.4, at 
low SNR, i.e., below 0 dB 푃 ( ) is low and 푃 ( ) increases as SNR is increased reaching close to 1. At = 0.5, the 
performance is better after SNR= 2dB. With α=0.6, even better performance is obtained, and the results are close to the 
energy detector. The common pattern observed here is that as SNR increases 푃푑 increases and saturates at a particular 
SNR value because of less noise and both 푃 ( )and 푃 ( ) are close and follow the pattern mentioned below. 

 

 
Fig.5:푃 ( ) and 푃 ( ) plotted against varying SNR for α= 0.4, 0.5, 0.6. 

 
In Figure 6 where 푃 ( )and 푃 ( ) are plotted for various values of α. The proposed sensing model behaves poorly 

at α =0.3, but its performance improves at α =0.4. At α =0.5, our proposed sensing model detects with high probability, 
and it gets close to 1 for α =0.7. Figure 6 shows that the performance of the proposed sensing method depends on the 
number of non-uniform samples available at the NUSS block for detection.  
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Fig.6:푃 ( ) and 푃 ( ) plotted against varying α for different SNR. 

 
In figure 7, we plot 푃 ( ) and 푃 ( ) as a function of varying SNR. At low SNR, i.e., at -5dB the values of   
푃 ( )and 푃 ( )  are high. Bur as SNR increases,푃 ( )and 푃 ( ) drop quickly, becoming close to zero at SNR=1 
dB. At α=0.6, the performance of proposed method matches the performance of the energy detector for SNR above 
1dB. 

 
Fig.7:푃 ( ) and푃 ( ) plotted against varying SNR for α=0.4,0.5,0.6. 

 
푃 ( )and	푃 ( ) also depends on the number of non-uniform samples available. This can be explained using 

Figure 8, shown in below where 푃 ( ) and are plotted for various values for α. As αincreasesfrom 0.3 to 0.7,푃  
drops rapidly reaching close to zero due to the availability of more number of samples. It is observed that performance 
of the sensing model improves with increasing α. 

 
Fig.8:푃 ( )and 푃 ( ) plotted against varying α for different SNR. 
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VI. EMPIRICAL EVALUATION OF Β 
 
 As seen from the previous section, the threshold η depends on β. This section provides the empirical evaluation of 

β. Optimum values of β result in a higher difference between 푃  and푃 given in equation (10). For simplicity of 
explanation, in this section, we only present results for detection of spectral indexes K.  

Δ푃 = 푃 − 푃  (10) 

                                    

 

Fig.9: Normalized PSD estimate obtained from NUSS block. 
 

Also, the PSD estimate obtained from the moving average filter of the NUSS block is normalized such that 훾 =
0dB and therefore from equation (4), η = β.The signal parameters are the same as were in Section V. 1000 MonteCarlo 
iterations are performed to find β empirically β. 

 
(a) α = 0.4 

Figure 9 shows the PSD estimate for α=0.4 and SNR=10dB. In figure 10, we have plotted Δ푃 against varying β 
values for α = 0.4, 0.5 and 0.7 for three values of SNR, i.e., 0, 5, 10dB. From Figure 10(a), we observe that for small α 
= 0.4, maximum values of Δ푃 occur between β = -4.5 dB and β = -3 dB but Δ푃 does not reach one because of the small 
number of samples available 

 

 
(b) α = 0.7 

Fig.10: Selection of optimal value of threshold η. 
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In Figure 10(b), α = 0.7 Δ  reaches even at low SNR due to the availability of more number of samples. Maximum 
Δ푃 is observed between β = -6dB and β = 3dB at the cost of more number of samples also the reconstruction is less 
nosiy. From the results in Figure 10, it is observed that β= -3.5dB is within the optimal Δ푃 range for the three values of 
α and SNR considered which can be selected to establish a trade-off between α and detection performance. Therefore, 
in this paper, we have selected β = -3.5dB which provides satisfactory results as was shown in the numerical results in 
Section V. 

 
VII. RECONSTRUTION PERFOMANCE 

 
 In this section, we analyze the impact of false detections of the proposed non-uniform sensing method on the 

reconstruction of 푥(푡) shown in Figure 2. The performance is analyzed in terms of the RMSE (Root Mean Squared 
Error) of the reconstructed time domain signal, i.e, 

푅푀푆퐸 =
‖푥(푡)− 푥(푡)‖

‖푥(푡)‖  (11) 

The simulation parameters are the same as were in Section V, i.e., A multiband signal with ℬ = [-300 MHz, 300 
MHz] and the Nyquist sampling rate is 퐹 =600 MHz and 푁 =6. 

In Figure 11, RMSE is plotted against SNR values for α = 0.3 and 0.4 for non-blind multicoset sampler and blind 
multicoset sampler. The non-blind multicoset sampler has perfect knowledge about the number of bands 푁  and 
spectral indexes Kof the input signal while blind multicoset sampler uses theproposed NUSS block to estimate 푁  and 
K. 

It is observed that for α = 0.3, the RMSE for blind multicoset sampler is very high compared to RMSE for the non-
blind multicoset sampler. This is because of the high number of false detections provided by the NUSS block at α = 
0.3. However for α = 0.4, the performance of the NUSS block improves for SNR values greater than 5 dB, and it is 
observed that the RMSE for blind multicoset sampler matches that of the non-blind multicoset sampler. 

To summarize the performance of the proposed sensing method we have plotted RMSE against varying values of α 
for different SNR values in Figure 12. We can observe from RMSE curves that the performance of the proposed non-
uniform sensing method is poor at α = 0.3 even at high SNR because of high	푃 . Furthermore, as α increases RMSE 
reduces because more number of samples are available for reconstruction and 푃  is high.  

 

 
Fig.11: Comparison of blind and non-blind multicoset samplers in terms of RMSE plotted against various SNR values 
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Fig.12: Comparison of the non-blind and blind multicoset sampler in terms of RMSE plotted against various values of α 

 
VIII. CONCLUSION 

 
 In this paper, we have proposed a wideband spectrum sensing technique based on non-uniform sub-Nyquist multicoset 
sampling. We have shown that the proposed sensing method shows high detection and low false alarm probabilities 
also the performance of the proposed method improves with the increase in the number of the non-uniform samples. 
Finally, the effect of false detection is shown using RMSE of the reconstructed time domain signal. 
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