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ABSTRACT: the visual and especially tactile quality of a surface is called a texture. Stochastic textures with features 
spanning many length scales arise in a range of contexts in sciences, from nano size structures like synthetic bone to a 
ocean wave height distributions and cosmic phenomena like inter-galactic cluster void distributions. The samples here 
came from the papermaking industry but such a reduction of large frequently noisy spatial data sets is useful in a range 
of materials and contexts at all scales. Aim is reducing the size of structure without any loss in information by using 
information geometry. We are giving answer to “how far apart are two distributions?” e.g. Gaussian (m, s2 ): Euclidian 
distance between two distributions has no `natural’ statistical significance. Information geometry seeks first the shape 
of the (multidimensional) surface and once the surface is known the shortest curve between two points representing the 
distributions is the ‘natural’ metric, Information geometry provides a natural metric to discriminate among formation 
textures. 
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I. INTRODUCTION 
 

High dimensional data visualization and interpretation have become increasingly important for data mining, 
information retrieval, and information discrimination applications arising in areas such as search engines, security, and 
biomedicine. The explosion in sensing and storage capabilities has generated a vast amount of high dimensional data 
and led to the development of Many algorithms for feature extraction and visualization, known variously as 
dimensionality reduction, manifold learning, and factor analysis.2Dimensionality reduction strategies fall in two 
categories: supervised task-driven approaches and unsupervised geometry-driven approaches. Supervised task-driven 
approaches reduce data dimension according to optimize a performance criterion that depends on both the reduced data 
and ground truth, e.g., class labels. Examples include linear discriminant analysis (LDA) , supervised principal 
components , and multi-instance dimensionality reduction. Unsupervised geometry-driven approaches perform 
dimension reduction without ground truth and try to preserve geometric properties such as distances or angles between 
data points. Examples include principal components analysis (PCA) and multidimensional scaling (MDS), and 
ISOMAP. Most of these approaches use Euclidean distances between sample points to drive the dimensionality 
reduction algorithm. Recently it has been recognized that these Euclidean algorithms can be generalized to non-
Euclidean spaces by replacing the Euclidean distance metric with a more general dissimilarity measure. In particular, 
when the data samples are probability distributions, use of an information divergence such as Kullback-Leibler (KL) 
instead of Euclidean distance leads to a class of information geometric algorithms for dimensionality reduction . In this 
article we motivate and explain the application of information-geometric dimensionality reduction for two real-world 
applications. 
Information-geometric dimensionality reduction (IGDR) operates on a statistical manifold of probability distributions 
instead of the geometric manifold of Euclidean data points. When such distributional information can be extracted from 
the data, IGDR results in significant improvements in information retrieval, visualization, and classification 
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performance. This improvement can be understood from the point of view of information-theoretic bounds: information 
divergence is generally more relevant to statistical discrimination performance than Euclidean distance. For example, 
for binary classification the minimum probability of error converges to zero at an ex-potential rate with rate constant 
equal to the Kullback-Leibler information divergence between the distributions of the data over each class. The KL 
divergence not a function of the Euclidean distances between data points unless these distributions are spherical 
Gaussian. Therefore, as it preserves information divergence, in many cases IGDR can produce more informative 
dimension reductions than classical Euclidean approaches. 
It is the process of algorithmically constructing a large digital image from a small digital sample image by taking 
advantage of its structural content. It is an object of research in computer graphics and is used in many fields, amongst 
others digital image editing, 3D computer graphics and films., texture synthesis can be used to fill in holes in images 
(as in inpainting), create large non-repetitive background images and expand small pictures. Procedural textures are a 
related technique which may synthesise textures from scratch with no source material. By contrast, texture synthesis 
refers to techniques where some source image is being matched or extended. in machine learning and statistics, 
dimensionality reduction or dimension reduction is the process of reducing the number of random variables under 
consideration, via obtaining a set of principal variables. It can be divided into feature selection and feature extraction. 
Feature selection approaches try to find a subset of the original variables (also called features or attributes).  
There are three strategies; filter (e.g. information gain) and wrapper (e.g. search guided by accuracy) approaches, and 
embedded (features are selected to add or be removed while building the model based on the prediction errors). See 
also combinatorial optimization problems. In some cases, data analysis such as regression or classification can be done 
in the reduced space more accurately than in the original space. ie as shown in fig1.  
 
 
 
 

II. RELATED WORK 
 
 
 
 
 
 
 

Advantages of dimensionality reduction: it is reduces the time and storage space required. Removal of multi-co 
linearity improves the performance of the machine learning model. It becomes easier to visualize the data when 
reduced to very low dimensions such as 2D or 3D.and Applications are A dimensionality reduction technique that is 
sometimes used in neuroscience is maximally informative dimensions, which finds a lower-dimensional representation 
of a dataset such that as much information as possible about the original data is preserved. 
1b.Structured data analysis is the statistical data analysis of structured data. This can arise either in the form of an a 
priori structure such as multiple-choice questionnaires or in situations with the need to search for structure that fits the 
given data, either exactly or approximately. This structure can then be used for making comparisons, predictions, 
manipulations etc. 
1c.Types of structured data analysis: are Algebraic data analysis, Bayesian analysis, cluster combinational data 
analysis, Formal concept analysis, Functional data analysis, geometric data analysis, Regression analysis, Shape, 
Topological, Tree structured data analysis.. 
1d.Information geometry: is a branch of mathematics that applies the techniques of differential geometry to the field 
of probability theory. This is done by taking probability distributions for a statistical model as the points of a 
Riemannian manifold, forming a statistical manifold. The Fisher information metric provides the metric. Information 
geometry reached maturity through the work of Shun ‘chi Amari and other Japanese mathematicians in the 1980s. 
Amari and Nagaoka's book, Methods of Information Geometry, is cited by most works of the relatively young field due 
to its broad coverage of significant developments attained using the methods of information geometry up to the year 
2000. Many of these developments were previously only available in Japanese-language publications. 

 

 
 

Fig1 Machine learning and data mining 
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1e.Data sets: Data was acquired as local height values from the surfaces of paper samples using a photometric stereo device; details 
of the measurement technique are provided. Data were acquired at di�erent times under subtly di�erent optical conditions; though 
in all cases we handled arrays of at least 2400×2400 pixels with spatial resolution between 4 µm and 7 µm per pixel, which is 
smaller than the expected width of the constituent fibres. All measurements were made on industrially manufactured paper samples. 
Measurements were made on 3 groups of samples: 
Group 1: Packaging and printing grades. Ten samples: coated packaging paper and cardboard; uncoated packaging paper and 
cardboard; uncoated wrapping grades. Measurements made on both sides of each sample. 
Group 2: Tissue. Five samples of two-ply bathroom tissue. Measurements made on one side only. 
Group 3: Printing, writing and sack grades. Five samples: one high quality coated grade and three utility grades for printing and 
writing; one grade for making paper sacks. Measurements made on one side only; two measurements made of each sample. 
Graphical representations of three examples of the surface height distribution are provided in Figure 1. These show three very 
di�erent surfaces: a coated board surface, an uncoated packaging paper surface and the surface of a bathroom tissue. In the figure2, 
dark regions correspond to low height and vice versa; each image represents a square of side 1500 pixels. 
Information geometry model applications: Information Geometry and its Applications 
1. Divergence Function and Dually Flat Riemannian Structure 
2. Invariant Geometry on Manifold of Probability Distributions 
3. Geometry and Statistical Inference semi parametric 
 
 
 
 
 
 
 
 
 

Fig2 connection between two Gaussian surfaces 
 

II. PROPOSED ALGORITHM 
 

PROCEDURE FORMATION: There are many well-established quantitative measures of formation:  
Variance of local grammage at different scales of inspection, power spectrum, specific perimeter, Often comparative 
quantifiers are used, which compare measured properties with those of a random fibre network, direct mappings exist 
among all established measure of formation as shown in fig 3. The decay of the variance of local grammage with scale 
of inspection, x, depends on the autocorrelation function for pairs of points separated by a distance r , which we denote 
a *( r ): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 3.formation of two pictures their spectral density Vs wavelength. 
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The wavelength power spectrum is given by the Fourier transform of a *( r ).  For random networks, a ( r ) and s2( b ) 
are known analytically. Autocorrelation is a characteristic of the texture of our grammage map.  
It measures the degree of association of the grammage of each pixel with that of pixels a given distance away, Close 
pixels are likely to have similar grammage,The grammage of ‘distant’ pixels are independent, Rate of decrease is a 
characteristic of ‘floc size’ . Autocorrelation is given by the covariance divided by the variance (0 < a( r ) ≤ 1). It is a 
GLOBAL average property. The covariance of a pair of random variables p and q is given by  

  
          From our array of local grammage values, ߚ ,we obtain the local average grammage of the first and second 
neighbours, 1 ߚ and 2 ߚ. 
So, from the distribution of local grammages, we obtain three approximately Gaussian distributions. • The random 
variables, 1 ߚ , ߚ and 2 ߚ are not independent; they have covariances:  Cov(1 ߚ , ߚ) Cov(2 ߚ , ߚ) Cov(2 ߚ ,1 ߚ) • The 
covariance matrix characterises the trivariate Gaussian distribution: 
 
 
And observe the following fig4a,b.c shows clearly about. Covariance of a pair of random variables p and q , The 
covariance matrix characterises the trivariate Gaussian distribution ,Covariance diagram from matrix formations. 
 

 
Fig4a.covariance of a pair of random variables p and q 

 

 

 
 
 
 
Fig 4b.The covariance matrix characterises the trivariate Gaussian 
distribution 

 

http://www.ijircce.com


         
                         
                        ISSN(Online): 2320-9801 
              ISSN (Print):  2320-9798    

International Journal of Innovative Research in Computer 
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Website: www.ijircce.com 
Vol. 5, Issue 1, January 2017 

 

Copyright to IJIRCCE                                                              DOI: 10.15680/IJIRCCE.2017. 0501159                                          750     

  

 
Fig 4c.Covariance diagram from matrix 

 
For a pair of trivariate Gaussian distributions, A & B, with • common mean vector,  
µA = µB = µ. 
Different covariance matrices,         	∑஺ ≠	∑஺  
 The information distance is known and is given by 
 

  
 
II.1 Information Distance Example: 
 

Table 1 information inputs and respective simulation outputs. 
Sno Inputs Simulation 
1 Grammage β Number of fibres per cluster na is a poisson variable with mean nc 
2 Fibre properties 

Length λ 
Coarseness,δ 
Width ω 

 
Mean grammage, Giof each cluster assumed const. 
G= I . β = (I δ)/ω 

3 Mean floc radious (rf)   R = sqrt[ nc. λ . ω/(ߨ.I)] 
 

4 Floc Intensity 0≤I≤1 nc  fibres centres deposited within circles of r 
5 Expected number of fibres per 

cluster nc 
nc fibre cenres deposited within circles of r. 
for each fibre, contribution to mass of each pixel calculated 
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Fig 5a 4 information distance example 

 
 

 
  
 

Fig 5b 4 information distance example 16 samples 

 

 
 

 

 
 
 Fig 6.1 Centralize the matrix of DS by subtracting row and 

column means and adding grand mean 
Fig 6.2 Compute the N Eigen values and N � N -dimensional 
eigenvectors of the resultant matrix. 
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We seek to visualize our N (=16) samples on a 3D surface. We employ the ‘dimensionality reduction’ or 
‘multidimensional scaling’ approach of Carter : 
 1. Centralize the matrix of DS by subtracting row and column means and adding grand mean; 
 2. Compute the N Eigen values and N � N -dimensional eigenvectors of the resultant matrix; 
 3. Make a 3 × 3 matrix, A, of the three largest Eigen values; make a 3 x N matrix, B , of corresponding eigenvectors; 
 4. The transpose of the product A.B is an N × 3 matrix which gives N coordinates in 3-space. 

 
III. RESULTS 

 
Dimensional Reduction of Statistical structural of a Paper by Information Geometry results are shown in fig 7. 
Simulated networks with grammage 5, 10, 15… 100 g/ m2. Finally UofT Archive shown in fig 7c. 

 
 

 

 
Fig 7a.Simulated networks with grammage 5, 10, 15, …, 100 g/ 
m2 
 

 
 

 
 
 

Fig 7b.effect gamma random 

Fig6.3Visualize our N (=16) samples on a 3D surface. 
Fig6.4 transpose of the product A.B is an N × 3 matrix which 
gives N coordinates in 3-space 
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Fig 7c.UofT Archive 
 
 

 
IV. CONCLUSION 

 
Information-geometric framework for dimensionality reduction. As contrasted to standard Euclidean approaches to 
manifold learning, which aim to reconstruct a Riemannian sub-manifold of Euclidean space, our objective is to learn 
statistical manifolds. We have seen that when the data produces realizations of probability density functions lying on a 
statistical manifold, it performs information-driven dimensionality reduction in both the density space and the sample 
space. These techniques were illustrated on the problem off low cytometry analysis, showing the ability to find a 
subspace in which a pathologist can better diagnose chronic lymphocytic leukemia patients. It is also able to compare 
patients one to another in a single low-dimensional embedding space Information geometry provides a natural metric to 
discriminate among formation textures. Discrimination among simulated textures is consistent with the parameters used 
to generate them. Sheets formed by different forming methods exhibit clustering according to forming conditions.  
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