

e-ISSN: 2320-9801 | p-ISSN: 2320-9798

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH

IN COMPUTER & COMMUNICATION ENGINEERING

Volume 9, Issue 8, August 2021

INTERNATIONAL STANDARD SERIAL NUMBER INDIA

Impact Factor: 7.542

9940 572 462

🕥 6381 907 438

🛛 🖂 ijircce@gmail.com

il.com 🛛 🙆 www.ijir

www.ijircce.com

e-ISSN: 2320-9801, p-ISSN: 2320-9798 www.ijircce.com | Impact Factor: 7.542

Volume 9, Issue 8, August 2021

| DOI: 10.15680/IJIRCCE.2021.0908026 |

Performance Evaluation of Data Mining Classification Techniques

Dr. Sanjay Kumar¹, Mrs. Raksha Shukla²

Dept. of Computer Science, Kalinga University, Raipur (C.G.) India¹

Ph. D. Scholar (Computer Science) Kalinga University, Raipur (C.G.) India²

ABSTRACT: In present era large amount of data is generated day by day. All those data are needed to be study and analyze. Data mining can be applied in different data like scientific, medical, space, aeronautics bank data analysis and so on. There are so many techniques and algorithms in data mining for this purpose such as machine learning classification, clustering, regression, ANN etc. Data mining studied data patterns and provide meaning full information.

Main aim of this paper is study of different classification techniques and evaluation of their performance. Weather data is used for this study. Classification techniques are used for getting information from those weather data.

KEYWORDS: Data Mining, Classification, C4.5, Naïve Bayes, SVM, Random Forest, KNN.

I. INTRODUCTION

Data Mining should have been more appropriately named "Knowledge mining from data" as per Han and Kamber [11]. Many other terms have a similar mining to data mining for example- knowledge mining from data, knowledge extraction, data pattern analysis, data archaeology and data dredging.KDD (Knowledge discovery in data) process.

KDD process

- (1) Data cleaning (to remove noise and inconsistent data)
- (2) Data Integration (multiple data sources may be combined)
- (3) Data Selection (where data relevant to the analysis task are retrieved from the database)
- (4) Data Transformation (where data are transformed and consolidated in appropriate forms)
- (5) Data Mining (an essential process where intelligent methods are applied to extract data patterns)
- (6) Pattern Evaluation (to identify the truly interesting pattern representing knowledge based on interesting pattern)
- (7) Knowledge Presentation (visualization and knowledge representation techniques are used to present mined knowledge to users)

II. LITERATURE REVIEW

Data mining is most widely used method for research in present era. Most of researchers use this technique for their study and get better result. Many research work has been studied related to the topic, some of them discussed here-

Santos [1] used classification techniques for identify fake review s about the products which is helpful to analyze customers like and dislike. Educational data classification and prediction has been done [2]. They compare SVM, Naïve Bayes and Random Forest and find the Random Forest is best for their research. Mumine [3] have found that random forest and simple CART have great accuracy to detect early stage cancer. The author of [4] paper made a clinical decision support system for prediction of multiple disease. They used 25 classifiers and find some of them are suitable for prediction such as CF, LDA, GLM, RF, GP. Research paper [5] used many classification techniques, but find that gradient boost and SVM is best of all for mobile price classification. Paper [6] is about overview of different neural network optimization algorithms such as BPNN, RNN, LM and find appropriate classification. In [8] author made IDS system using hybrid form of classification algorithms. Random forest is best for IDS comparison to others. By the [9] authors utilizes the classification algorithms NN,NB, RF, KNN and find Random Forest gives more accuracy than others for weather prediction. In [10] researchers used KNN, RF, NB and DT but find KNN is best for soil data classification.

IXHHI

e-ISSN: 2320-9801, p-ISSN: 2320-9798 www.ijircce.com | Impact Factor: 7.542

Volume 9, Issue 8, August 2021

| DOI: 10.15680/IJIRCCE.2021.0908026 |

III. METHODOLOGY

A. Classification

Classification is a main domain of data mining technique which maps data into predefined groups or classes. It is supervised learning because classes are defined before examining of data.

Classification is used for different purposes like machine learning, pattern recognition, network security, medical science etc. There are many classification techniques decision tree, Naïve Bayes, KNN, SVM etc.

1) C4.5 Algorithm:

C4.5 is successor of ID3, uses an extension to information gain known as gain ratio, which attempts to overcome this bias. It applies a kind of normalization to information gain using a "split information" value defined analogously with info (D) as

$$plitInfo_{A}(D) = -\sum_{i=1}^{\nu} \frac{|D_{i}|}{|D|} \times \log_{2} \left(\frac{|D_{i}|}{|D|} \right)$$

 $SplitInfo_{A}(D) = -\sum_{a=1}^{n} \frac{|D|}{|D|} \times \log_{2} \left| \frac{|D|}{|D|} \right| \mathbb{B}$ This value represents the potential in D mation gen D at d by splitting the training dataset, D, into v partitions, corresponding to the v outcomes of a test on attribute A. The gain ratio is defined as:

$$Gainratio(A) = \frac{Gain(A)}{SplitInfo_A(D)}$$

The attribute with the maximum gain ratio is selected as the splitting attribute.

2) Naïve Bayes:

Naïve Bayes is the supervised machine learning algorithm. It can be used for both classification and regression. It is probabilistic classifier. It requires small number of training data for classification. Bayes' Theorem:

Probability (B given A) = (Probability (A and B) / Probability (A))

3) Random Forest:

Random Forest [11] is an ensemble method. It is a decision tree classifier so that the collection of classifiers is a "forest". The individual decision trees are generated using a random selection of attributes at each node.

Random Forest is a supervised learning algorithm, describe as a combination of a tree predictors. It is used for both classification and regression. It is most accurate general purpose learning technique.

4) SVM:

Support Vector Machine is a supervised learning algorithm. It is a method for the classification of both linear and nonlinear data. It uses nonlinear mapping to transform the original training data into a higher dimension.

The training time of fastest SVM [11] can be extremely slow, they are highly accurate, owing to their ability to model complex nonlinear decision boundaries. They are much less prone to over fitting than other methods. SVM also provide numeric prediction as well as classification. They have been applied to a number of areas, including handwritten digit recognition, object recognition and speaker identification, as well as benchmark time- series prediction tests.

5) kNN:

The k-nearest-neighbor [11] method was first described in the early 1950s. The method is labor intensive when given large training sets. It has since been widely used in the area of pattern recognition.

Nearest-neighbor classifiers are based on learning by anology, that is by comparing a given test tuples with training tuples that are similar to it. The training touples are described by n attributes. Each touple represents a point in an n-dimensional space. In this way, all the training touples are stored in an n-dimentional pattern space. When given an unknown touple, a k-nearest-neighbor classifier searches the pattern space for the k training touples that are closest to the unknown space. These k training touples are the k "nearest neighbors" of the unknown touple.

"Closeness" is defined in terms of a distance metric, such as Euclidean distance. The Euclidean distance between two points or touples, say, $X_{1=}(x_{11}, x_{12}, \dots, x_{1n})$ and $X_{2=}(x_{21}, x_{22}, \dots, x_{2n})$, is

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| <u>www.ijircce.com</u> | |Impact Factor: 7.542

|| Volume 9, Issue 8, August 2021 ||

| DOI: 10.15680/IJIRCCE.2021.0908026 |

$$dist(X_1, X_2) = \sqrt{\sum_{i=1}^n (x_{1i} - x_{2i})^2}.$$

B. Weka

Waikato Environment for Knowledge Analysis (Weka), as given in Wikipedia[12] is a data mining/machine learning tool developed at the University of Waikato, New Zealand, is free software licensed under the GNU General Public License, Weka is a bird found only in New Zealand. This is a collection of machine learning algorithms for data mining tasks. The algorithm can either be applied directly to a dataset or called from Java code. Weka contains tools for data preprocessing, classification, regression, clustering, association rules and visualization. It is also well suited for developing new machine learning schemes. Weka provides access to SQL databases using Java database Connectivity and can process the result returned by a database query.

C. Dataset

Weather data is used for this research paper. The dataset has been taken from UCI Machine learning repository. It is 1(2013) year weather data for Washington City so there is 366 instances. It consist three attributes precipitation, temperature and wind.

IV. PERFORMANCE METRICES

In this section we discuss about how accurate any classifier predicting class label of touples. Performance of the classifier include accuracy, sensitivity (or recall), specificity, precision, F_1 and F_{β} . Accuracy is a specific measure so it can be used to check classifier predictive ability. According to [13]-

Accuracy (CA) refers to the correct predictions rate. It is given by the division of total correct predictions by the total number of instances.

$$CA = \frac{TP + TN}{TP + TN + FP + FN}$$

Precision is also called positive predictive value and reports which of those who were predicted to be positive are actually positive. It is defined as the number of true positives divided by the number of true positives plus the false positives.

Precision
$$= \frac{TP}{TP + FP}$$

Sensitivity calculates the true positive rate, and this is how many of the actual positives were correctly labeled. It is defined as the number of true positives divided by the number of true positives plus the number of false negatives.

Sensitivity
$$=\frac{TP}{TP+FN}$$

Specificity defines the true negative rate. This is the proportion of actual negatives which were correctly predicted. To obtain this metric, we divide the number of false positives by the number of true negatives plus the number of false positives.

Specificity
$$= \frac{\text{TN}}{\text{TN} + \text{FP}}$$

F1-Score is the harmonic mean of Precision and Recall. It presents a better measure of the incorrectly classified cases than the CA.

$$F1 = 2. \frac{precision.sensitivity}{precision + sensitivity}$$

V. RESULT AND EVALUATION

This section discuss about result of five classification algorithms. The experiments are applied in 365 weather dataset. We can see performances of those algorithms like time taken to build up model, accuracy, precision,

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| <u>www.ijircce.com</u> | |Impact Factor: 7.542

Volume 9, Issue 8, August 2021

| DOI: 10.15680/IJIRCCE.2021.0908026 |

sensitivity (recall), F_1 score etc. the screenshots of result of Naïve Bayes, C4.5, Random Forest, SVM and kNN algorithms are shown bellow

Preprocess Classify Cluster Associate	Select attributes Visualize	
Choose SMO -C 1.0 -L 0.001 -P 1.0E-12	-N 0 -V -1 -W 1 -K "weka classifiers functions support/ector. Polyteme) -E 1.0 -C 250007" -calibrator "weka classifiers functions. Logistic -R 1.0E-8 -M -1 -num-d	ecimal-places 4*
Test options	Classifier output	
O Use training set	Time taken to build model: 0 seconds	
O Supplied test set Bet		
Cross-validation Folds 10	Stretiled GrdS-Valdetion	
O Percentage split % 66	Correctly Cleasified Instances 283 77.5362 8	
More options	Incorrectly Classified Instances 62 22.455 %	
· · · · · · · · · · · · · · · · · · ·	Rappa statistic 0.6229 Mean absolute error 0.1132	
Nom) play	Root mean squared error 0.2591	
	Relative absolute error 48.1434 % Root relative spared error 75.774 %	
Start Stop	Total Number of Instances 365	
esuit list (right-click for options)	Ignored Class Unknown Instances 1099	
17.07.00 - bayes MaiveBayes	Detailed Accuracy By Class	
	IP Bate FP Bate Precision Recall F-Heasure MCC BOC Area FRC Area Class	
	0.838 0.224 0.771 0.838 0.803 0.614 0.841 0.728 sun 0.804 0.019 0.969 0.804 0.875 0.810 0.833 0.827 rain	
	0.333 0.006 0.350 0.333 0.266 0.382 0.432 0.085 amov	
	0.000 0.000 P 0.000 P P 0.000 P P 0.0114 0.112 Fog	
	Weighted Avg. 0.775 0.118 9 0.775 9 9 0.834 0.722	
	Confusion Matrix	
	a b c d e < classified as	
	145 3 0 25 0 i a = aun	
atus		
DK		
Traduction of sit	💦 👘 Tit research papes	- 8 40 - 535 PM
		07-Aug-2
	Fig. I Result of Naïve Bayes	
Weka Explorer		
Preprocess Classify Cluster Associate	Select attributes Visualize	
Change Lun class H.S.		
Choose J48 -C 0.25 -M 2		
est options	Classifier output	
🔾 Use training set		
O Supplied test set Set	and sent to build models 0.03 seconds	
Cross-validation Folds 10	Stretified cross-validation	
O Percentage split % 66	Correctly Cleantfiel Testances Sta 87,1935 5	
More options	Incorrectly Classified Instances 47 12.8767 %	
	Mean absolute error 0.0845	
(Nom) weather	Rotinean spored error 0.2146 Relative absolute error 35.936 %	
Start Skep	Root relative squared error 63,3393 %	
esuit list (right-click for options)	Ignored Class Unknown Instances 1096	
23.06.55 - bayes NaiveBayes	men Detailed Accuracy By Class and	
23:34:18 - trees J48		
	0.963 0.200 0.610 0.963 0.555 0.752 0.966 0.742 Jun	
	0.937 0.024 0.967 0.937 0.952 0.916 0.936 0.823 Fain 0.000 0.003 0.000 0.000 0.000 0.000 0.005 mmm	
	0.000 0.003 0.000 0.000 0.000 -0.011 0.717 0.073 drixtle	
	0.000 0.000 7 0.000 7 7 0.935 0.007 fog Weighted Avg. 0.671 0.109 7 0.671 7 7 0.941 0.750	
	Contraine Marrie	
	A D C d * < classified as	
tatus		
ok		
😰 🥭 🧊 🖸 🌘	y 😪 Weka GUI Chooser 🧹 Weka Espikarer 📑 Calculator 🎻 nb - Pavit	- 🔐 🕫 🦽 ங 11:34 PM
	Fig 2 Result of C4 5	
	TIEL2 Result of C 1.5	
Weka Explorer		
Preprocess Classify Cluster Associate	Select attributes Visualize	
Classmer		
Choose RandomForest -P 100-I 100 -num	slots 1 - K 0 - M 1.0 - V 0.001 - S 1	
Test options C	lassifier output	
O Use training set		1.
O Supplied test set But	TIME TAKEN TO BUILD model: D.28 seconds	
Cross-validation Folds 10	Stratified cross-validation	
O Percentage split % 66	le contra de contra d	
More options	Loursectly classified instances 322 80.2197 %	
	Napp statistic 0.791 Mann shealing strengt	
(Nom) weather	Cot Mean aquated error 0.273	
Rhart	Relative absolute error 72.0477 % Root relative agained error 79.0435 %	1
Result but (right click for ordinary)	Toronad Line Denome Terrenes 1065	
23.06 55 - bayes NaiveBayes 23.34 18 - trees J48	Detailed Acouracy By Class	
2337.14 - trees RandomForest	TP Parts FP Parts Precision Becall F-Hearure MC ROC Area DFC Area Clars	
	0.943 0.014 0.950 0.943 0.961 0.959 0.949 0.946 man	
	0.000 0.000 1 0.000 1 9 0.745 0.080 enow 0.000 0.000 1 0.000 1 9 0.066 0.285 drixle	
	0.000 0.000 7 0.000 7 7 0.946 0.140 fog	
	Confusion Matrix	
	A b c d e c+ tlassifiet as	1
Status		
OK		Log 💉 x0

Fig.3 Result of Random Forest

Co weater

🚳 🌽 🚺 1Evaluation of dit... 🛐 🧔 🧭 🐼 Weka GLE

All - Part

- 🔐 🕫 💊 🛅 11:37 PM

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| <u>www.ijircce.com</u> | |Impact Factor: 7.542

Volume 9, Issue 8, August 2021

| DOI: 10.15680/IJIRCCE.2021.0908026 |

Weka Explorer												ALC: NO. OF STREET, ST.
Preprocess Classify Cluster Associ	ate Select attributes V	isualize										
assifier		2.0										
Choose SMO -C 1.0 -L 0.001 -P 1.0E-	12-N 0-V-1-W1-K*weki	a classifiers:	functions st	upportVector.Pr	obKemel-F	E 1.0 -C 25000	7" -calibrat	or "weka.class	sifiers.functio	ns.Logistic -R 1.0E-8	-M -1 -num-decimal-places	5 6 °
est options	Classifier output											
Use training set												
O Supplied test set Set	Time taken to b	Time taken to build model: 1.00 seconds										1
Cross-validation Folds 10	Stratified	Stratified cross-validation										
Percentage solt % 60	Sumary											
	Correctly Class	ifled Inst	cances	269		73.6986						
More options	Incorrectly Cla	salfied In	stances	96		26.3014						
	Nean absolute a	FFOF		0.25	136							
om) weather	 Root mean aquar 	ed error		0.37	199							
	Relative absolu	te error		108.72	295 4							
Start Skop	Root relative s	quared ers	TOT	99.41	84 4							
suit list (right-click for options)	Ignored Class D	inknown Ins	stances	and a	1096							
23.06.55 - bayes NaiveBayes	Detailed Ac	curacy By	Class	-								
23:34:18 - trees_J48												
23.37.14 - trees RandomForest		TP Rate	SP Rate	Precision	Recall	F-Measure	NCC	ROC Area	FRC Area	Clazz		
23:39 57 - functiona SMO	L	0.079	0.354	0.491	0.247	0.774	0.535	0.405	0.115	sun		
		0.000	0.000	7	0.000	2	2	0.499	0.002	RECH		
		0.000	0.000	7	0.000	7	7	0.006	0.079	drizzle		
		0.000	0.000	7	0.000	2	2	0.456	0.010	fog		
	Weighted Avg.	0.737	0.226	7	0.737	7	7	0.662	0.329			
	Confusion M	atris										1
atus												
ok .												Log 🛷
			And in case of the local division of the loc	and the second se				Contraction of the local distance of the loc				-
1Evaluation of d	st 🖸 🧿		eka GUI Cho	ooser 🤇 🤇	Weks Lop	Aorer	Calc	ulator	6 K K	F - Paint	- 87 4	0 11:40 PM

Fig.4 Result of SVM

Weka Explorer								1000				all and a lot service of
Preprocess Classify Cluster Associa	te Select attributes Visua	alize										
Jassifier											 	
Choose Bk-K1-W0-A weka.core.ne	ighboursearch.LinearNNSea	rch - A Twe	eka.core.Er	ac il de an Distar	nce -R first	las0**						
est options	Classifier output											
Use training set Supplied test set Cross-validation Folds 10 Percentage splt % 00 More options.	Time taken to buil Stratified cro Summary Correctly Classif Incorrectly Classif	d model: ss-valid ed Insta fied Inst	: 0.02 se detion ances stances	conds 		67.3973 52.6027	:					ĺ
(Nom) weather	Rappa statistic Nean absolute error Root mean squared Root relative absolute Root relative squa Jocal Number of In Ignored Class Unkn	error error ired erro istances iown Inst	or tabces	0.43 0.13 0.35 56.65 104.63 365	193 132 185 176 % 1096							_
23:09:55 - barye NakaBayes 223:418 - Itees JAB 223:414 - Itees RandomForest 23:39:57 - Rundlonis (MO 23:420:6 - tae) (6):	Detailed Acour T Beighted Avg. Confusion Matr & b z d	Eacy By C 9 Sate 1.705 1.768 1.66 1.66 1.67 1.125 1.674 1.25 1.674	Class	Precision 0.659 0.776 0.000 0.091 0.100 0.671	Recall 0.705 0.705 0.000 0.067 0.125 0.674	F-Measure 0.497 0.771 0.000 0.077 0.111 0.672	MCC 0.418 0.590 -0.005 0.044 0.066 0.462	BOC Ares 0.827 0.465 0.750 0.598 0.556 0.648	FRC Area 0.552 0.102 0.045 0.045 0.045 0.001 0.309	Class sun rain snow drizzle fog		Ę
Status												
ок												Log 🛷
🗿 🌈 🕕 I Evaluation of d	- 🧕 🧿	() we	eks GUE Cho	oser 🤇	Fig 5	Result o	f k-NN	dator	1	/M - Paint	- 9 0 .	11:42 PM 06-Aug-21

Now evaluation of all the algorithms are presented in following table, that includes time taken to build up model, correctly classified instances and accuracy.

Table-I Performance Evaluation of	Algorithms
-----------------------------------	------------

Algorithms	Time (seconds)	Correctly classified instances (total 365)	Accuracy (%)
NB	0	283	77.5342
C4.5	0.03	318	87.1233
RF	0.28	322	88.2192
SVM	1.08	269	73.6986
kNN	0.02	246	67.3973

| e-ISSN: 2320-9801, p-ISSN: 2320-9798| <u>www.ijircce.com</u> | |Impact Factor: 7.542

Volume 9, Issue 8, August 2021

| DOI: 10.15680/IJIRCCE.2021.0908026 |

The following graph shows the performances of the algorithms-

VI. CONCLUSION

Data mining is very popular method for different KDD task. In this paper data mining classification technique is used for weather forecasting.

There are so many facts of classification algorithms we can see in the result and evaluation part like accuracy, precision, recall, specificity, F measure etc. We observe that performance of Random Forest is best of all because its accuracy is highest as well as time taken to build up model is also less. The performance of C4.5 is best after RF. The time of Naïve Bayes is lowest and that is good but accuracy is low. kNN gives worst performance. Performance of SVM is medium between all. So we can say Random Forest is best for weather data prediction.

REFERENCES

- [1]. Santos, A. S., Camargo, L. F. R., & Lacerda, D. P. (2020). Evaluation of classification techniques for identifying fake reviews about products and services on the internet. *Gestão & Produção*, 27(4), e4672. https://doi.org/10.1590/0104-530X4672-20
- [2]. J. Jayapradha, Kishore Jagan Jothi Kumar, Binti Deka "Educational Data Classification and prediction using Data Mining Algorithms" IJRTE ISSN: 2277-3878, Volume-8 Issue-3, September 2019.
- [3]. Mumine "Breast Cancer Prediction and Detection Using Data Mining Classification Algorithms: A Comparative Study" ISSN 1330-3651 (Print), 2019 ISSN 1848-6339 (Online).
- [4]. Bayu Adhi Tama and Sunghoon Lim "A Comparative Performance Evaluation of Classification Algorithms for Clinical Decision Support Systems" Mathematics Oct 2020, 8, 1814; doi:10.3390/math8101814..
- [5]. Keval Pipalia, Rahul Bhadja "Performance Evaluation of Different Supervised Learning Algorithms for Mobile Price Classification" IJRSET ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 8 Issue VI June 2020.
- [6]. Saeed Ngmaldin Bardab, Tarig Mohamed Ahmed, Tarig Abdalkarim Abdalfadil Mohammed "Data mining classification algorithms: An Overview" IASE (2) 2021, Pages: 1-5.
- [7]. F. Sherwani, B.S.K.K. Ibrahim, Muhammad Mujtaba Asad "Hybridized classification algorithms for data classification applications: A review" Egyptian Informatics Journal 22 (2021) 185–192.
- [8]. Azar Abid Salih1*, Adnan Mohsin Abdulazeez " Evaluation of Classification Algorithms for Intrusion Detection System: A Review" JSCDM VOL. 2 NO. 1 (2021) 31-40.
- [9]. Fairoz Q. Kareem1*, Adnan Mohsin Abdulazeez2 and Dathar A. Hasan "Predicting Weather Forecasting State Based on Data Mining Classification Algorithms" Asian Journal of Research in Computer Science 9(3): 13-24, 2021; Article no.AJRCOS.68636 ISSN: 2581-8260.
- [10]. Kazheen Ismael Taher1*, Adnan Mohsin Abdulazeez2 and Dilovan Asaad Zebari "Data Mining Classification Algorithms for Analyzing Soil Data" Asian Journal of Research in Computer Science8(2): 17-28, 2021; Article no.AJRCOS.68035 ISSN: 2581-8260.
- [11]. J iawai Han and Micheline Kamber Data Mining: Concepts and Techniques, 3rd edition.

[13]. Luis Chaves and Goncalo Marques "Data Mining Techniques for Early Diagnosis of Diabetes: A Comparative Study" applied sciences MDPI Appi Scie.2021.

^{[12].} Wikipedia.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH

IN COMPUTER & COMMUNICATION ENGINEERING

🚺 9940 572 462 应 6381 907 438 🖂 ijircce@gmail.com

www.ijircce.com