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ABSTRACT: Multi-core processors share the same DRAM memory, and several threads issues memory access 

requests simultaneously. The limited bandwidth of shared memory will be a bottleneck of overall system performance 
as the number of cores increases. Conventional DRAM memory controller designs do not consider the interference 
among different threads when making scheduling decisions. To maximize the memory bandwidth utilization, First-
Ready First-Come-First-Serve(FR-FCFS) policy was proposed. It utilizes the memory access locality up to maximum, 
but it may not fit to the multi-threaded memory request, because some threads may fall in danger of starvation. 

In this paper, we propose an improvement for FR-FCFS algorithm introducing the concept of memory access service 
rate (MASR). For the practical reason, MASR is implemented with the limited waiting time. From the simulation with 
well-knows benchmarks, we showed our scheme can improve both the fairness and overall system performance.  
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I. INTRODUCTION 
 
Multi-core processors enable multiple threads to run simultaneously on a single chip with a shared main memory. A 

DRAM memory subsystem is usually used as the main memory to support multiple cores and multiple threads on them. 
Different threads running on different cores send memory access requests simultaneously and may interfere with each 
other while accessing the shared resources. The limited bandwidth of shared memory will be a bottleneck of overall 
system performance as the number of cores increases.  

Unfortunately, conventional DRAM memory controller designs do not consider the interference among different 
threads when making scheduling decisions. To maximize the memory bandwidth utilization, First-Ready First-Come-
First-Serve(FR-FCFS) policy was proposed[1]. FR-FCFS prioritizes memory requests that hit in the row-buffers of 
DRAM banks over other requests. It utilizes the memory access locality up to maximum, but it may not fit to the multi-
threaded memory requests. A poor thread might be starved without getting an opportunity to access memory. 

In this paper, we propose an improvement for FR-FCFS algorithm introducing the concept of memory access service 
rate (MASR). For the practical reason, MASR is implemented with the limited waiting time. From the simulation with 
well-knows benchmarks, we showed our scheme can improve both the fairness and overall system performance. 

The remainder of the paper is organized as follows. Section 2introduces DRAM architecture, necessity of memory 
scheduling and some previous effort to make the memory scheduling feasible for multi-core systems. Our new 
algorithm is proposed in Section 3, and section 4 shows the simulation result. Finally, some conclusions are given in 
Section 5. 

II. RELATED WORK 
 
A DRAM chip has a 3-dimensional architecture with bank, row and column[1] as you can see in Figure 1. To 

access data in memory, the address that consists of the bank, row and column fields should be identified. Each bank has 
a single row-buffer, which can contain at most one row and the data in a bank can be accessed only from the row-buffer. 
So an access to the memory requires three transactions before the data transfer – bank pre-charge, row activate and 
column access. A pre-charge charges and prepares the bank. An activate copies an entire row data from the array to the 
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row-buffer. Finally, a column data can be accessed from the row data. Depending upon the status of the row-buffer, the 
amount of time it takes to service a DRAM request is not uniform. It can be categorized into 3 cases. 

 Row hit: The request is accessing the row currently in the row buffer. Only a read or write command is 
needed, so the lowest bank access latency is resulted from the only a column access. 

 Row closed: There is no row in the row buffer. An activate command needs to be issued to open the row 
followed by a read or write command. The bank access latency is a row access plus a column access time. 

 Row conflict: The requested row differs from the one currently in the row buffer. The contents of the row 
buffer first need to be written back into the memory array using the pre-charge command. Then the required 
row is opened and accessed using activate and read/write commands. This case shows the highest bank 
access latency. 

 
Fig.1. Modern DRAM Architecture [1] 

 

Pre-charge and activate need more time than read or write operation, so something should be done to minimize the 
number of pre-charge or activate operations. Between the processors and the memory system, a memory controller 
works to translates memory requests into memory commands. A memory controller consists of a memory scheduler, a 
request buffer, and write/read buffers. The role of memory scheduler is very important in performance because it 
reorders requests to meet the scheduling policy of the system for its own goal, such as maximum throughput. Memory 
schedulers have 2 levels. Each bank owns per-bank scheduler, prioritizing requests to this bank and generating a 
sequence of DRAM commands while respecting the bank timing constraints. The access-bank channel scheduler 
receives the banks’ ready commands and issues the one with the highest priority while respecting the time constraints 
and scheduling conflicts in the DRAM address and data buses. The request buffer contains each memory request’s state 
such as the address, type and identifier of the request. The read/write buffers contain the data being written to/read from 
the memory. 

It is not easy work for the memory controller to acquire maximum performance upon gap between the processors 
and memory bandwidth. DRAM chips have complex timing constraints including both bank-local and memory-global 
constraints.  

Modern memory controllers use FR-FCFS(First Ready-First Com First Serve) scheduling policy. It gives the top 
priority to the memory requests that hit in the row-buffer over others. If no request hits the row-buffer, older requests 
have priority over the younger ones. If the recently processed command is on the row-A, then request for row-A is 
selected as next among several requests. Consecutive processing on a row can maximize the utilization of memory 
bandwidth. For single-core systems FR-FCFS policy was shown to provide the best average performance, but this does 
not take into account the interference among different threads and cores on scheduling decisions. While some threads 
achieve high throughput, another threads can suffer from memory accessstarvation[2]. In multi-core multi-threaded 
systems, it is more needed for every thread to have the fair memory access opportunity to get higher overall system 
performance. 
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Several memory scheduling policies for multi-core environment have been proposed. Zhu et al.[3] evaluated thread-
aware memory access scheduling schemes and found it may improve the overall system performance by up to 30%. 
They considered the number of outstanding memory requests, the reorder buffer occupancy, and the issue queue 
occupancy. They mainly focused on SMP with single core processor, but their work can be adapted to the multi-core 
systems. Nesbit et al.[4] introduced the fair queueing(FQ) concept which consider the history of memory bandwidth 
utilization of each thread. Mutlu et al.[5] proposed a Stall-Time Fair Memory(STFM) scheduler to provide quality of 
service to different threads sharing the DRAM memory system. This scheme equalizes the DRAM-related slowdown 
experienced by each thread due to interference from other threads without degrading overall system performance. 
Complicated implementation is a difficult part of their work. Zhu et al.[6] proposed a fair thread-aware memory 
scheduling algorithm to achieve the fairness and memory system performance. It considers the source thread 
information, the arriving time and service history of each thread. 

III. PROPOSED SCHEDULING ALGORITHM 
A. Priority Measure: 

In FR-FCFS scheduler, it is highly possible that the memory request of a certain thread using the same region of 
memory is processed with high priority to maximize the memory bandwidth. In our work, another parameter is 
introduced to consider the overall system performance. In multi-core multi-thread environment, the load balancing has 
considerable influence on the system performance. But complete fairness is not needed because the working threads 
have different memory access characteristics. Memory-intensive tasks can utilize the memory access locality, thus 
maximize the memory bandwidth utilization. It is needed that the tasks with the low memory access should have the 
opportunities accessing memory in a certain time. So we introduce a measure, memory access service rate (MASR), to 
decide the priority of the memory requests. This MASR is calculated per thread per unit time. The MASR of threadiis: 

 
MASR = 	 	 	 	

	 	
 eq.(1) 

     
If the MASR value goes too low, the thread is in danger of starvation and the overall system performance may be 

degraded. We should find the compromising point between the minimum memory latency and fair processing of all 
threads. 

 
B. Description of the  Proposed Algorithm: 

To measure the exact MASR is not plausible because it needs the record of all memory access activity per thread 
and floating point calculation. Instead, we use waiting time TWi of thread i because the MASR will be converged to 0 
for the very long waiting time. Let TS be the service time of recent memory access request, THbethe threshold value of 
maximum waiting time. The algorithm is as follows: 

TS = 0 
While true 
 For newly arrived request, TWi = 0 
 For each memory request in queue, TWi = TWi + TS 
 if there is a request TWj> TH 
    Select j  
 else if there are row-hit access requests 
    Select a row-hit access request j in FCFS manner 
 else 
   Select j with the largest TW 
 TWj = 0 

Complete service for request j 
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TS = recent memory access service time (calculated by Tpre-charge, Tactivate, Tcolumn) 
 End of while 

When the time to select the next request to be served comes, the memory scheduler finds whether there is any 
access request to wait too long. The top priority goes to the thread waiting more than the threshold value. If there is no 
such request, the scheduler selects the request with the same row address as recently served request. Neither case, the 
next request is selected according to the First-Come-First-Serve policy. 

IV. SIMULATION RESULTS 
 
We use a cycle accurate DRAM simulator, DRAMSim2[7] in conjunction with Gem5[8], an event-driven computer 

system simulator. Parameters for DRAMSim2 come from DDR3 SDRAM datasheet[9]. Table 1 shows the simulation 
setup parameters.  

Table 1 Simulation Setup 
Parameters Value 

Processor 4 core, 4.5 GHz, Out-of-order 
L1 Caches(per core) 64KB instruction cache, 64KB data cache, LRU 
L2 Cache(shared) 1MB Cache, 8-way, LRU 
DRAM 1 channel, 1 rank, 8 bank, DDR3-2133 

 
The simulation was performed with SPEC CPU2006 benchmarks[10]. Benchmark programs have different memory 

access characteristics. We categorized them into 4 memory character groups and performed simulation on the character 
groups and the combinations of different characteristics on 4-core processors. Table 2 shows the combination of 
benchmarks and their characteristics. 

Table 2. Workgroup and characteristics of benchmarks 
Workgroup Benchmarks Characteristic 

G1 astar,hmmer, bzip2, sjeng Not memory-intensive, Low RB hit rate 
G2 H264ref, gobmk, gcc, povray Not memory-intensive, High RB hit rate 

G3 Soplex,lbm, libquantum, sphinx3 Memory-intensive, High RB hit rate 
G4 astar,mcf, hmmer, bzip2 Low RB hit rate 
G5 mcf,soplex, lbm, sphinx3 Memory-intensive 

G6 hmmer, bzip2, gcc, povray Not memory-intensive 
G7 gobmk,gcc, soplex, sphinx3 High RB hit rate 
G8 bzip2, mcf, povray, lbm Mixed 

 
Before the performance evaluation, we should decide the threshold waiting time, TH. If TH becomes a big number, 

our algorithm will be closer to FR-FCFS, and algorithm with very small TH will be similar to Round-Robin, thus the 
memory bandwidth utilization will be the worst.  

Referring to the Mutlu et al.’s work[5], we take 2 evaluation metric, Unfairnessindex and Weighted Speedup. Let 
MCPI be Memory Cycles per Instruction. Unfairness index is defined as follows. 

 

Unfairness = 	  , where MemSlowdown = 	  eq. (2) 

 
With Weighted Speedup, we can estimate the overall system throughput.  
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Weighted	Speedup = 	∑ , where IPC is InstructionsPer Cycle eq. (3) 

 
We evaluate our algorithm in comparison to baseline FR-FCFS algorithm. Fig. 2 and 3 shows the simulation results 

of 8 workgroups with TH = 50 memory cycles.  

 
Fig. 2. Unfairness 

 
Figure 2 shows the unfairness oftwo algorithms. Proposed algorithm reduced unfairness average 39.8%, while FR-

FCFS shows better fairness in some workgroups. When the memory access patterns of different programs are well 
mixed, both algorithms worked more fairly. 

Our algorithm achieved improvement of weighted speedup with average 10.3%. As we can see in Figure 3, 
proposed algorithm outperformed FR-FCFS in every cases, although the increase is not much. 

 
Fig.  3. Weighted Speedup 

 
Both algorithms showed good performance for the mixed workload. The combinations of workload with similar 

characteristics are not good for both fairness and overall system performance. 
Waiting time threshold may be important for the performance. But the difficulty with the value is that it is not easy 

to find regular or formal method determining the threshold. 
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V. CONCLUSION 
 
We proposed a memory scheduling algorithm which reduces the unfairness and improves overall system 

performance in multi-core multi-threaded computing environment. With the limited waiting time, any thread doesn’t 
fall in danger of memory access starvation. From the simulation, we showed about 39% increase of fairness and 10% 
improvement of system performance. 

We used the SPEC benchmarks for the evaluation, but more multi-threaded applications should be experimented 
using other kind of benchmark such as PARSEC[11, 12]. Also, for an important factor of our algorithm, waiting time 
threshold, more systematic approach is needed because the optimal value varies from each combination of applications 
according to the memory access characteristics. Dynamic estimation of threshold is also considerable method for future 
research work. 
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